SpaceX is helping the crew members aboard the International Space Station get down and nerdy as they launch their Dragon cargo spacecraft into orbit for the 13th commercial resupply mission, targeted for Dec. 15 from our Kennedy Space Center in Florida.
This super science-heavy flight will deliver experiments and equipment that will study phenomena on the Sun, materials in microgravity, space junk and more.
Here are some highlights of research that will be delivered to the station:
The Optical Fiber Production in Microgravity (Made in Space Fiber Optics) experiment demonstrates the benefits of manufacturing fiber optic filaments in a microgravity environment. This investigation will attempt to pull fiber optic wire from ZBLAN, a heavy metal fluoride glass commonly used to make fiber optic glass.
When ZBLAN is solidified on Earth, its atomic structure tends to form into crystals. Research indicates that ZBLAN fiber pulled in microgravity may not crystalize as much, giving it better optical qualities than the silica used in most fiber optic wire.
The Total and Spectral Solar Irradiance Sensor, or TSIS, monitors both total solar irradiance and solar spectral irradiance, measurements that represent one of the longest space-observed climate records. Solar irradiance is the output of light energy from the entire disk of the Sun, measured at the Earth. This means looking at the Sun in ways very similar to how we observe stars rather than as an image with details that our eye can resolve.
Understanding the variability and magnitude of solar irradiance is essential to understanding Earth’s climate.
The Space Debris Sensor (SDS) will directly measure the orbital debris environment around the space station for two to three years.
Above, see documentation of a Micro Meteor Orbital Debris strike on one of the window’s within the space station’s Cupola.
Research from this investigation could help lower the risk to human life and critical hardware by orbital debris.
Future space exploration may utilize self-assembly and self-replication to make materials and devices that can repair themselves on long duration missions.
The Advanced Colloids Experiment- Temperature-7 (ACE-T-7) investigation involves the design and assembly of 3D structures from small particles suspended in a fluid medium.
The Transparent Alloys project seeks to improve the understanding of the melting and solidification processes in plastics in microgravity. Five investigations will be conducted as a part of the Transparent Alloys project.
These European Space Agency (ESA) investigations will allow researchers to study this phenomena in the microgravity environment, where natural convection will not impact the results.
Arthrospira B, an ESA investigation, will examine the form, structure and physiology of the Arthrospira sp. algae in order to determine the reliability of the organism for future spacecraft biological life support systems.
The development of these kinds of regenerative life support systems for spaceflight could also be applied to remote locations on Earth where sustainability of materials is important.
Follow @ISS_Research on Twitter for more space science and watch the launch live on Dec. 15 at 10:36 a.m. EDT HERE!
For a regular dose of space-nerdy-goodness, follow us on Tumblr: https://nasa.tumblr.com/.
Why is the final phase so difficult?Sorry if I sound dumb,I'm just curious.Also,what will be the rover's first task after landing?
How much of a daily threat is "Space junk"?
Good question, as this is a serious issue and one which we must monitor constantly in order to avoid harmful impacts on the International Space Station with objects in space. For example, the US Space Command in Colorado is monitoring all objects bigger than a few inches in order to assess any potential impact with the Space Station. We categorize the chance of impact and if there is a high probability, we will actually use thrusters to slightly change the position of the Space Station to avoid the impact. If it is something that we are unable to avoid, we will have the astronauts shelter in place in their spacecrafts and in case of a catastrophic impact, they will return to Earth.
There are many paths to a career at NASA. Here are 10 amazing people on the frontlines of deep space exploration.
“I was running a pub in the North of England after dropping out of college, and as fate would have it, I met a lovely American physics lecturer Dr. Jim Gotaas,” said Abi Rymer (shown above in the bottom right of the group photo). Abi works on the Europa Clipper mission.
“I was sold on a course he ran on Observational Astronomy and Instrumentation at the University of Central Lancashire in Preston, Lancashire and I went from there to join the second year of the Physics and Astronomy at Royal Holloway, part of London University. I loved theoretical physics but never imagined I was talented enough to do a PhD. When I graduated, I was shocked to be top of the year.”
“Within seven months of being at NASA’s Jet Propulsion Laboratory,” says Brent Buffington, a mission design manager, “I figured out we could modify the Cassini Prime Mission trajectory to fly very close to the moon Tethys—a moon that didn’t have any close flybys in the original Prime Mission—and simultaneously lower a planned 621-mile (1,000-kilometer) targeted flyby of Hyperion down to 311 miles (500 kilometers). To be this young buck fresh out of grad school standing in front of a room full of seasoned engineers and scientists, trying to convince them that this was the right thing to do with a multi-billion dollar asset, and ultimately getting the trajectory modification approved was extremely rewarding.”
“Geochemical evidence suggests that between 4 and 2.5 billion years ago, there may have been an intermittent haze in the atmosphere of Earth similar to the haze in the atmosphere of Saturn’s moon Titan,” says astrobiologist Giada Arney. “It's a really alien phase of Earth's history —our planet wouldn't have been a pale blue dot, it would have been a pale orange dot. We thought about questions like: What would our planet look like if you were looking at it as an exoplanet? How you might infer biosignatures—the signs of life—from looking at such an alien planet?”
“I spent the summer after graduating from studying Mars' remnant magnetic field in the Planetary Magnetospheres Lab at NASA Goddard Space Flight Center,” says planetary geophysicist Lynnae Quick. “My advisor, Mario Acuña, showed me how to bring up Mars Global Surveyor (MGS) images of the Martian surface on my computer. This was the first time I'd ever laid eyes, firsthand, on images of another planet's surface returned from a spacecraft. I remember just being in awe.
“My second favorite moment has to be pouring over mosaics of Europa and learning to identify and map chaos regions, impact craters and other surface units during my first summer at APL. Once again, I felt that there was a whole other alien world at my fingertips.”
“A few months after NASA was formed I was asked if I knew anyone who would like to set up a program in space astronomy,” says Nancy Roman, a retired NASA astronomer. “I knew that taking on this responsibility would mean that I could no longer do research, but the challenge of formulating a program from scratch that I believed would influence astronomy for decades to come was too great to resist.”
“I took Planetary Surfaces with Bruce Murray (whom I later found out had been JPL’s fifth director) and did a presentation on Europa's chaos terrains,” say Serina Diniega, an investigation scientist on the Europa Clipper mission. “I was fascinated to learn about the different models proposed for the formation of these enigmatic features and the way in which scientists tried to discriminate between the models while having very limited observational data. In this, I realized I’d found my application: modeling the evolution of planetary landforms."
“I admire people who dedicate themselves 110 percent to what they do,” says Warren Kaye, a software engineer. “People like the recently deceased Stephen Hawking, who rose above his own physical limitations to develop new scientific theories, or Frank Zappa, who was able to produce something like 50 albums worth of music over a 20-year span.”
“I got to pick what the camera took pictures of in a given week, and then analyze those pictures from the standpoint of a geologist,” says Tanya Harrison, a planetary scientist. “There aren't many people in the world who get paid to take pictures of Mars every day! Seeing the first images...It was almost surreal -- not only are you picking what to take pictures of on Mars, you're also typically the first person on Earth to see those pictures when they come back from Mars.”
As a child, what did you want to be when you grew up?
“A scientist,” says Casey Lisse, a scientist on our New Horizons mission to Pluto and the Kuiper Belt.
At what point did you determine that you would become a scientist?
“Age 5.”
“Throughout my life, I’ve gone from being an extremely shy introvert to more of an outgoing extrovert,” says science writer Elizabeth Landau. “It’s been a gradual uphill climb. I used to be super shy. When I was really young, I felt like I didn't know how to talk to other kids. I was amazed by how people fluidly spoke to each other without thinking too hard about it, without appearing to have any kind of embarrassment or reservation about what they were saying. I've definitely developed confidence over time—now I can very quickly and comfortably switch from talking about something like physics to personal matters, and be totally open to listening to others as well.”
Check out the full version of “Solar System: 10 Things to Know This Week” HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What caused this outburst of this star named V838 Mon? For reasons unknown, this star’s outer surface suddenly greatly expanded with the result that it became the brightest star in the entire Milky Way Galaxy in January 2002. Then, just as suddenly, it faded. A stellar flash like this had never been seen before – supernovas and novas expel matter out into space.
Although the V838 Mon flash appears to expel material into space, what is seen in the above GIF from the Hubble Space Telescope is actually an outwardly moving light echo of the bright flash.
In a light echo, light from the flash is reflected by successively more distant rings in the complex array of ambient interstellar dust that already surrounded the star. V838 Mon lies about 20,000 light years away toward the constellation of the unicorn (Monoceros), while the light echo above spans about six light years in diameter.
Credit: NASA, ESA
To discover more, visit: https://www.nasa.gov/multimedia/imagegallery/image_feature_2472.html
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, our Human Research Program has organized hazards astronauts will encounter on a continual basis into five classifications. (View the first hazard). Let’s dive into the second hazard:
Overcoming the second hazard, isolation and confinement, is essential for a successful mission to Mars. Behavioral issues among groups of people crammed in a small space over a long period of time, no matter how well trained they are, are inevitable. It is a topic of study and discussion currently taking place around the selection and composition of crews.
On Earth, we have the luxury of picking up our cell phones and instantly being connected with nearly everything and everyone around us.
On a trip to Mars, astronauts will be more isolated and confined than we can imagine.
Sleep loss, circadian desynchronization (getting out of sync), and work overload compound this issue and may lead to performance decrements or decline, adverse health outcomes, and compromised mission objectives.
To address this hazard, methods for monitoring behavioral health and adapting/refining various tools and technologies for use in the spaceflight environment are being developed to detect and treat early risk factors. Research is also being conducted in workload and performance, light therapy for circadian alignment or internal clock alignment, and team cohesion.
Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including isolation and confinement. To learn more, and find out what the Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of isolation and confinement with Tom Williams, a NASA Human Factors and Behavior Performance Element Scientist at the Johnson Space Center.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
A cluster of newborn stars herald their birth in this interstellar picture obtained with our Spitzer Space Telescope. These bright young stars are found in a rosebud-shaped (and rose-colored) nebulosity. The star cluster and its associated nebula are located at a distance of 3300 light-years in the constellation Cepheus.
A recent census of the cluster reveals the presence of 130 young stars. The stars formed from a massive cloud of gas and dust that contains enough raw materials to create a thousand Sun-like stars. In a process that astronomers still poorly understand, fragments of this molecular cloud became so cold and dense that they collapsed into stars. Most stars in our Milky Way galaxy are thought to form in such clusters.
The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is about one quarter the size of the full moon.
As in any nursery, mayhem reigns. Within the astronomically brief period of a million years, the stars have managed to blow a large, irregular bubble in the molecular cloud that once enveloped them like a cocoon. The rosy pink hue is produced by glowing dust grains on the surface of the bubble being heated by the intense light from the embedded young stars. Upon absorbing ultraviolet and visible-light photons produced by the stars, the surrounding dust grains are heated and re-emit the energy at the longer infrared wavelengths observed by Spitzer. The reddish colors trace the distribution of molecular material thought to be rich in hydrocarbons.
The cold molecular cloud outside the bubble is mostly invisible in these images. However, three very young stars near the center of the image are sending jets of supersonic gas into the cloud. The impact of these jets heats molecules of carbon monoxide in the cloud, producing the intricate green nebulosity that forms the stem of the rosebud.
Not all stars are formed in clusters. Away from the main nebula and its young cluster are two smaller nebulae, to the left and bottom of the central 'rosebud,'each containing a stellar nursery with only a few young stars.
Astronomers believe that our own Sun may have formed billions of years ago in a cluster similar to this one. Once the radiation from new cluster stars destroys the surrounding placental material, the stars begin to slowly drift apart.
Additional information about the Spitzer Space Telescope is available at http://www.spitzer.caltech.edu.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Hi!! I’m a high school sophomore and I love the work NASA does! I’ve always wondered, what’s an astronaut’s first thought when leaving earth? What kind of experiences do you leave the expedition with? Thanks! :) - Lauren
Sixty years ago, the hopes of Cold War America soared into the night sky as a rocket lofted skyward above Cape Canaveral, a soon-to-be-famous barrier island off the Florida coast.
1. The Original Science Robot
Sixty years ago this week, the United States sent its first satellite into space on Jan. 31, 1958. The spacecraft, small enough to be held triumphantly overhead, orbited Earth from as far as 1,594 miles (2,565 km) above and made the first scientific discovery in space. It was called, appropriately, Explorer 1.
2. Why It's Important
The world had changed three months before Explorer 1's launch, when the Soviet Union lofted Sputnik into orbit on Oct. 4, 1957. That satellite was followed a month later by a second Sputnik spacecraft. All of the missions were inspired when an international council of scientists called for satellites to be placed in Earth orbit in the pursuit of science. The Space Age was on.
3. It...Wasn't Easy
When Explorer 1 launched, we (NASA) didn't yet exist. It was a project of the U.S. Army and was built by Caltech's Jet Propulsion Laboratory (JPL) in Pasadena, California. After the Sputnik launch, the Army, Navy and Air Force were tasked by President Eisenhower with getting a satellite into orbit within 90 days. The Navy's Vanguard Rocket, the first choice, exploded on the launch pad Dec. 6, 1957.
4. The People Behind Explorer 1
University of Iowa physicist James Van Allen, whose proposal was chosen for the Vanguard satellite, had made sure his scientific instrument—a cosmic ray detector—would fit either launch vehicle. Wernher von Braun, working with the Army Ballistic Missile Agency in Alabama, directed the design of the Redstone Jupiter-C launch rocket, while JPL Director William Pickering oversaw the design of Explorer 1 and other upper stages of the rocket. JPL was also responsible for sending and receiving communications from the spacecraft.
5. All About the Science
Explorer 1's science payload took up 37.25 inches (95 cm) of the satellite's total 80.75 inches (2.05 meters). The main instruments were a cosmic-ray detector; internal, external and nose-cone temperature sensors; a micrometeorite impact microphone; a ring of micrometeorite erosion gauges; and two transmitters. There were two antennas in the body of the satellite and its four flexible whips formed a turnstile antenna that extended with the rotation of the satellite. Electrical power was provided by batteries that made up 40 percent of the total payload weight.
6. At the Center of a Space Doughnut
The first scientific discovery in space came from Explorer 1. Earth is surrounded by radiation belts of electrons and charged particles, some of them moving at nearly the speed of light, about 186,000 miles (299,000 km) per second. The two belts are shaped like giant doughnuts with Earth at the center. Data from Explorer 1 and Explorer 3 (launched March 26, 1958) led to the discovery of the inner radiation belt, while Pioneer 3 (Dec. 6, 1958) and Explorer IV (July 26, 1958) provided additional data, leading to the discovery of the outer radiation belt. The radiation belts can be hazardous for spacecraft, but they also protect the planet from harmful particles and energy from the Sun.
7. 58,376 Orbits
Explorer 1's last transmission was received May 21, 1958. The spacecraft re-entered Earth's atmosphere and burned up on March 31, 1970, after 58,376 orbits. From 1958 on, more than 100 spacecraft would fall under the Explorer designation.
8. Find Out More!
Want to know more about Explorer 1? Check out the website and download the poster celebrating 60 years of space science. go.nasa.gov/Explorer1
9. Hold the Spacecraft In Your Hands
Create your own iconic Explorer 1 photo (or re-create the original), with our Spacecraft 3D app. Follow @NASAEarth this week to see how we #ExploreAsOne. https://go.nasa.gov/2BmSCWi
10. What's Next?
All of our missions can trace a lineage to Explorer 1. This year alone, we're going to expand the study of our home planet from space with the launch of two new satellite missions (GRACE-FO and ICESat-2); we're going back to Mars with InSight; and the Transiting Exoplanet Survey Satellite (TESS) will search for planets outside our solar system by monitoring 200,000 bright, nearby stars. Meanwhile, the Parker Solar Probe will build on the work of James Van Allen when it flies closer to the Sun than any mission before.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Warm summer temperatures often lead to dangerous blooms of phytoplankton in lakes, reservoirs and along our coastlines. These toxin-containing aquatic organisms can sicken people and pets, contaminate drinking water, and force closures at boating and swimming sites.
In this image, a severe bloom of toxic blue-green algae is spreading across the western half of Lake Erie. Taken on July 30, 2019 by the Operational Land Imager on our Landsat 8 satellite, this image shows green patches where the bloom was most dense and where toxicity levels were unsafe for recreational activities. Around the time of this image, the bloom covered about 300 square miles of Lake Erie’s surface, roughly the size of New York City. By August 13, the bloom had doubled to more than 620 square miles. That’s eight times the size of Cleveland.
The dominant organism—a Microcystis cyanobacteria—produces the toxin microcystin, can cause liver damage, numbness, dizziness, and vomiting. On July 29, 2019, the National Oceanic Atmospheric Administration (NOAA) reported unsafe toxin concentrations in Lake Erie and have since advised people (and their pets) to stay away from areas where scum is forming on the water surface.
You can stay informed about harmful algal blooms using a new mobile app that will send you alerts on potentially harmful algal blooms in your area. Called CyAN, it's based on NASA satellite data of the color changes in lakes and other bodies of water. It serves as our eye-in-the-sky early warning system, alerting the public and local officials to when dangerous waters may be in bloom.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
1. It’s Actually More Like a Three-Year Mission
NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko may have had a year-long stay in space, but the science of their mission will span more than three years. One year before they left Earth, Kelly and Kornienko began participating in a suite of investigations aimed at better understanding how the human body responds to long-duration spaceflight. Samples of their blood, urine, saliva, and more all make up the data set scientists will study. The same kinds of samples continued to be taken throughout their stay in space, and will continue for a year or more once they return.
2. What We Learn is Helping Us Get to Mars
One of the biggest hurdles of getting to Mars is ensuring humans are “go” for a long-duration mission and that crew members will maintain their health and full capabilities for the duration of a Mars mission and after their return to Earth. Scientists have solid data about how bodies respond to living in microgravity for six months, but significant data beyond that timeframe had not been collected…until now. A mission to Mars will likely last about three years, about half the time coming and going to Mars and about half the time on Mars. We need to understand how human systems like vision and bone health are affected by the 12 to 16 months living on a spacecraft in microgravity and what countermeasures can be taken to reduce or mitigate risks to crew members during the flight to and from Mars. Understanding the challenges facing humans is just one of the ways research aboard the space station helps our journey to Mars.
3. The Science Will Take Some Time
While scientists will begin analyzing data from Kelly and Kornienko as soon as they return to Earth, it could be anywhere from six months to six years before we see published results from the research. The scientific process takes time, and processing the data from all the investigations tied to the one-year mission will be no easy task. Additionally, some blood, urine and saliva samples from Kelly and Kornienko will still be stored in the space station freezers until they can be returned on the SpaceX Dragon spacecraft. Early on in the analytical process scientists may see indications of what we can expect, but final results will come long after Kelly and Kornienko land.
4. This Isn’t the First Time Someone Has Spent a Year in Space
This is the first time that extensive research using exciting new techniques like genetic studies has been conducted on very long-duration crew members. Astronaut Scott Kelly is the first American to complete a continuous, year-long mission in space and is now the American who has spent the most cumulative time in space, but it’s not the first time humans have reached this goal. Previously, only four humans have spent a year or more in orbit on a single mission, all aboard the Russian Mir Space Station. They all participated in significant research proving that humans are capable of living and working in space for a year or more.
Russian cosmonaut Valery Polyakov spent 438 days aboard Mir between January 1994 and March 1995 and holds the all-time record for the most continuous days spent in space.
Cosmonaut Sergei Avdeyev spent 380 days on Mir between August 1998 and August 1999.
Cosmonauts Vladimir Titov and Musa Manarov completed a 366-day mission from December 1987 to December 1988.
5. International Collaboration is Key
The International Space Station is just that: international. The one-year mission embodies the spirit of collaboration across countries in the effort to mitigate as many risks as possible for humans on long-duration missions. Data collected on both Kelly and Kornienko will be shared between the United States and Russia, and international partners. These kinds of collaborations help increase more rapidly the biomedical knowledge necessary for human exploration, reduce costs, improve processes and procedures, and improve efficiency on future space station missions.
6. So Much Science!
During Kelly’s year-long mission aboard the orbiting laboratory, his participation in science wasn’t limited to the one-year mission investigations. In all, he worked on close to 400 science studies that help us reach for new heights, reveal the unknown, and benefit all of humanity. His time aboard the station included blood draws, urine collection, saliva samples, computer tests, journaling, caring for two crops in the Veggie plant growth facility, ocular scans, ultrasounds, using the space cup, performing runs with the SPHERES robotic satellites, measuring sound, assisting in configuring cubesats to be deployed, measuring radiation, participating in fluid shifts testing in the Russian CHIBIS pants, logging his sleep and much, much more. All of this was in addition to regular duties of station maintenance, including three spacewalks!
7. No More Food in Pouches
After months of eating food from pouches and cans and drinking through straws, Kelly and Kornienko will be able to celebrate their return to Earth with food of their choice. While aboard the space station, their food intake is closely monitored and designed to provide exactly the nutrients they need. Crew members do have a say in their on-orbit menus but often miss their favorite meals from back home. Once they return, they won’t face the same menu limitations as they did in space. As soon as they land on Earth and exit the space capsule, they are usually given a piece of fruit or a cucumber to eat as they begin their initial health checks. After Kelly makes the long flight home to Houston, he will no doubt greatly savor those first meals.
8. After the Return Comes Reconditioning
You’ve likely heard the phrase, “Use it or lose it.” The same thing can be said for astronauts’ muscles and bones. Muscles and bones can atrophy in microgravity. While in space, astronauts have a hearty exercise regimen to fight these effects, and they continue strength training and reconditioning once they return to Earth. They will also participate in Field Tests immediately after landing. Once they are back at our Johnson Space Center, Functional Task Tests will assess how the human body responds to living in microgravity for such a long time. Understanding how astronauts recover after long-duration spaceflight is a critical piece in planning for missions to deep space.
9. Twins Studies Have Researchers Seeing Double
One of the unique aspects of Kelly’s participation in the one-year mission is that he has an identical twin brother, Mark, who is a former astronaut. The pair have taken part in a suite of studies that use Mark as a human control on the ground during Scott’s year-long stay in space. The Twins Study is comprised of 10 different investigations coordinating together and sharing all data and analysis as one large, integrated research team. The investigations focus on human physiology, behavioral health, microbiology/microbiome and molecular/omics. The Twins Study is multi-faceted national cooperation between investigations at universities, corporations, and government laboratories.
10. This Mission Will Help Determine What Comes Next
The completion of the one-year mission and its studies will help guide the next steps in planning for long-duration deep space missions that will be necessary as humans move farther into the solar system. Kelly and Kornienko’s mission will inform future decisions and planning for other long-duration missions, whether they are aboard the space station, a deep space habitat in lunar orbit, or a mission to Mars.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts