Cape Town Was On The Verge Of Running Out Of Water. The South African City Of 3.7 Million People Had

Cape Town Was On The Verge Of Running Out Of Water. The South African City Of 3.7 Million People Had

Cape Town was on the verge of running out of water. The South African city of 3.7 million people had suffered years of drought. But after nearly running dry earlier this year, the reservoirs are now rising thanks to rain, conservation efforts, and engineering fixes.

The city’s largest reservoir—Theewaterskloof—holds 40 percent of Cape Town’s water storage capacity, so it's a good barometer for the amount of water available. Natural-color images, captured by Landsat 8, show the change in water levels at Theewaterskloof between July 22, 2017, and July 9, 2018.

Read more HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

More Posts from Nasa and Others

5 years ago
To All Those Looking To The Stars, Believe In Yourself – We Do. ❤️ ⁣ ⁣ From Auto Mechanic To
To All Those Looking To The Stars, Believe In Yourself – We Do. ❤️ ⁣ ⁣ From Auto Mechanic To
To All Those Looking To The Stars, Believe In Yourself – We Do. ❤️ ⁣ ⁣ From Auto Mechanic To
To All Those Looking To The Stars, Believe In Yourself – We Do. ❤️ ⁣ ⁣ From Auto Mechanic To

To all those looking to the stars, believe in yourself – we do. ❤️ ⁣ ⁣ From auto mechanic to geologist - everyone's story is different. Our NASA astronauts come from all walks of life, with backgrounds as unique as the individuals themselves. ⁣ ⁣ Get to know their stories and even apply to #BeAnAstronaut, HERE. Applications close March 31. ⁣ ⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

Spot the International Space Station

Right now, there are humans living and working off the Earth on the International Space Station. They orbit our planet from 250 miles above every 90 minutes, which means the crew sees 16 sunrises and sunsets every day.

Spot The International Space Station

If you’re in the right place, at the right time, the space station is visible to the naked eye. It looks like a fast-moving plane, only much higher and traveling thousands of miles an hour faster. The fact that it’s the third brightest object in the sky makes it easier to spot…if you know when to look up.

That’s where we can help! Our Spot the Station site allows you to enter your location and find out when the space station will be flying overhead. You can even sign up to receive alerts that will send you email or text messages to let you know when and where to look up.

image

Why is the space station visible? It reflects the light of the Sun, the same reason we can see the Moon. However, unlike the Moon, the space station isn’t bright enough to see during the day.

To find out when the space station is flying over your area, visit: http://spotthestation.nasa.gov/

Learn more about the International Space Station and the crew HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Ad Astra, John Glenn (1921-2016)

An astronaut. 

A pilot. 

A husband. 

A father. 

A United States Senator.

An American hero. 

An original.

image

John Glenn (1921-2016) was all those things and more. When he rocketed into space on Feb. 20, 1962, to become the first American to orbit Earth, the flight set the nation on course to meet ever-more ambitious goals.

The life and career of Senator Glenn eclipses those of many. In spite of his accomplishments, he was a humble and gracious man (and 4-term U.S. senator).

During Glenn’s first flight, a scheduled 30-minute test to determine whether Glenn could fly the capsule manually became a matter of life and death when the automatic system malfunctioned after the first orbit.

image

"I went to manual control and continued in that mode during the second and third orbits, and during re-entry," Glenn recalled later.  "The malfunction just forced me to prove very rapidly what had been planned over a longer period of time." Another problem seemed even more serious -- telemetry indicated the spacecraft's heat shield was loose. It seemed possible that Glenn and the spacecraft would be incinerated on re-entry.  Glenn left the retrorocket pack in place to steady the heat shield during re-entry. "It made for a very spectacular re-entry from where I was sitting," he said. Big chunks of the burning material came flying by the window.

image

He wasn't sure whether the flaming debris was the rocket pack or the heat shield breaking up. "Fortunately," he told an interviewer," it was the rocket pack -- or I wouldn't be answering these questions."

image

In the words of President Obama, who awarded him the Presidential Medal of Freedom in 2012: “When John Glenn blasted off from Cape Canaveral atop an Atlas rocket in 1962, he lifted the hopes of a nation. And when his Friendship 7 spacecraft splashed down a few hours later, the first American to orbit the Earth reminded us that with courage and a spirit of discovery there's no limit to the heights we can reach together. With John's passing, our nation has lost an icon and Michelle and I have lost a friend. John spent his life breaking barriers, from defending our freedom as a decorated Marine Corps fighter pilot in World War II and Korea, to setting a transcontinental speed record ... The last of America's first astronauts has left us, but propelled by their example we know that our future here on Earth compels us to keep reaching for the heavens.  On behalf of a grateful nation, Godspeed, John Glenn.”

image

Glenn left the Astronaut Corps in 1964 and resigned from the Marine Corps in 1965. And, after some time in private industry ran for and was elected ti the U.S. Senate in 1974, carrying all 88 counties of Ohio. He was re-elected in 1980 with the largest margin in Ohio history. Ohio returned him to the Senate for a third term in 1986. In 1992 he was elected again, becoming the first popularly elected senator from his state to win four consecutive terms. During his last term he was the ranking member of both the Governmental Affairs Committee and the Subcommittee on Air/Land Forces in the Senate Armed Services Committee. He also served on the Select Committee on Intelligence and the Special Committee on Aging. He was considered one of the Senate's leading experts on technical and scientific matters, and won wide respect for his work to prevent the spread of weapons of mass destruction.

image

In 1998, Glenn flew on the STS-95 Discovery shuttle flight, a 9-day mission during which the crew supported a variety of research payloads including deployment of the Spartan solar-observing spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, and Glenn's investigations on space flight and the aging process.

NASA Administrator Charlie Bolden remembers, “Senator Glenn's legacy is one of risk and accomplishment, of history created and duty to country carried out under great pressure with the whole world watching.”

Today, we honor him for all that he stood for and continues to stand for -- grace under pressure, humility, ability, strength. 

Godspeed, John Glenn.


Tags
7 years ago

Applying Earth Observations Data to the Real World

In our DEVELOP Program, participants work on Earth science research projects and are mentored by science advisors from within the agency and from partner agencies, and extend research results to local communities. 

This year, our partners ran the gamut from NASA centers to The National Oceanic and Atmospheric Agency (NOAA) to the University of Georgia to state and local governments. The one thing all have in common: using data from our Earth-observing satellites to inform such topics as disaster relief, preserving watershed and marshlands, working municipalities to provide health and study. The program also helps future scientists develop research and presentation skills.

Annually, the participants gather at NASA Headquarters to present their findings. From more than two dozen, we’re highlighting a cross section whose projects covered climate and invasive species in Alaska; health and air quality in Las Cruces; disaster preparation in the Philippines; and air quality in the Shenandoah Valley.

The projects demonstrate to community leaders how our science measurements and predictions can be used to address local policy issues. This year, DEVELOP features more than two dozen projects covering Earth science topics from all corners of the globe. 

DEVELOP projects apply Earth observations to agriculture, climate, disasters, ecological forecasting, energy, health and air quality, oceans, water resources and weather. These projects highlight NASA Earth observation capabilities relative to environmental issues and concerns for enhanced policy and decision-making to improve life here on Earth.

DEVELOP projects apply Earth observations to agriculture, climate, disasters, ecological forecasting, energy, health and air quality, oceans, water resources and weather. These projects highlight NASA Earth observation capabilities relative to environmental issues and concerns for enhanced policy and decision-making to improve life here on Earth.

Visit the Develop Project page to learn more about the program and how to apply.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

After 20 years in space, the Cassini spacecraft is running out of fuel. In 2010, Cassini began a seven-year mission extension in which the plan was to expend all of the spacecraft’s propellant exploring Saturn and its moons. This led to the Grand Finale and ends with a plunge into the planet’s atmosphere at 6:32 a.m. EDT on Friday, Sept. 15.

The spacecraft will ram through Saturn’s atmosphere at four times the speed of a re-entry vehicle entering Earth’s atmosphere, and Cassini has no heat shield. So temperatures around the spacecraft will increase by 30-to-100 times per minute, and every component of the spacecraft will disintegrate over the next couple of minutes…

Cassini’s gold-colored multi-layer insulation blankets will char and break apart, and then the spacecraft's carbon fiber epoxy structures, such as the 11-foot (3-meter) wide high-gain antenna and the 30-foot (11-meter) long magnetometer boom, will weaken and break apart. Components mounted on the outside of the central body of the spacecraft will then break apart, followed by the leading face of the spacecraft itself.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

Why are bacteria resistant polymers being experimented, specifically in microgravity?


Tags
6 years ago

Gamma-ray Bursts: Black Hole Birth Announcements

Gamma-ray bursts are the brightest, most violent explosions in the universe, but they can be surprisingly tricky to detect. Our eyes can't see them because they are tuned to just a limited portion of the types of light that exist, but thanks to technology, we can even see the highest-energy form of light in the cosmos — gamma rays.

So how did we discover gamma-ray bursts? 

Accidentally!

image

We didn’t actually develop gamma-ray detectors to peer at the universe — we were keeping an eye on our neighbors! During the Cold War, the United States and the former Soviet Union both signed the Nuclear Test Ban Treaty of 1963 that stated neither nation would test nuclear weapons in space. Just one week later, the US launched the first Vela satellite to ensure the treaty wasn’t being violated. What they saw instead were gamma-ray events happening out in the cosmos!

image

Things Going Bump in the Cosmos

Each of these gamma-ray events, dubbed “gamma-ray bursts” or GRBs, lasted such a short time that information was very difficult to gather. For decades their origins, locations and causes remained a cosmic mystery, but in recent years we’ve been able to figure out a lot about GRBs. They come in two flavors: short-duration (less than two seconds) and long-duration (two seconds or more). Short and long bursts seem to be caused by different cosmic events, but the end result is thought to be the birth of a black hole.

image

Short GRBs are created by binary neutron star mergers. Neutron stars are the superdense leftover cores of really massive stars that have gone supernova. When two of them crash together (long after they’ve gone supernova) the collision releases a spectacular amount of energy before producing a black hole. Astronomers suspect something similar may occur in a merger between a neutron star and an already-existing black hole.

image

Long GRBs account for most of the bursts we see and can be created when an extremely massive star goes supernova and launches jets of material at nearly the speed of light (though not every supernova will produce a GRB). They can last just a few seconds or several minutes, though some extremely long GRBs have been known to last for hours!

Gamma-ray Bursts: Black Hole Birth Announcements

A Gamma-Ray Burst a Day Sends Waves of Light Our Way!

Our Fermi Gamma-ray Space Telescope detects a GRB nearly every day, but there are actually many more happening — we just can’t see them! In a GRB, the gamma rays are shot out in a narrow beam. We have to be lined up just right in order to detect them, because not all bursts are beamed toward us — when we see one it's because we're looking right down the barrel of the gamma-ray gun. Scientists estimate that there are at least 50 times more GRBs happening each day than we detect!

image

So what’s left after a GRB — just a solitary black hole? Since GRBs usually last only a matter of seconds, it’s very difficult to study them in-depth. Fortunately, each one leaves an afterglow that can last for hours or even years in extreme cases. Afterglows are created when the GRB jets run into material surrounding the star. Because that material slows the jets down, we see lower-energy light, like X-rays and radio waves, that can take a while to fade. Afterglows are so important in helping us understand more about GRBs that our Neil Gehrels Swift Observatory was specifically designed to study them!

image

Last fall, we had the opportunity to learn even more from a gamma-ray burst than usual! From 130 million light-years away, Fermi witnessed a pair of neutron stars collide, creating a spectacular short GRB. What made this burst extra special was the fact that ground-based gravitational wave detectors LIGO and Virgo caught the same event, linking light and gravitational waves to the same source for the first time ever!

image

For over 10 years now, Fermi has been exploring the gamma-ray universe. Thanks to Fermi, scientists are learning more about the fundamental physics of the cosmos, from dark matter to the nature of space-time and beyond. Discover more about how we’ll be celebrating Fermi’s achievements all year!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Meet Our Latest CubeSats

When the next Orbital ATK cargo mission to the International Space Station blasts off from Wallops Flight Facility in Virginia on May 20 at 5:04 a.m. EDT carrying science and supplies, the Cygnus spacecraft will also be carrying a few of our latest CubeSats.

image

The International Space Station is often used to deploy small satellites, a low-cost way to test technology and science techniques in space.

image

On board this time, for deployment later this summer, are...

The ‘Rabbit’ in the RainCube

As its name suggests, RainCube will use radar to measure rain and snowfall. CubeSats are measured in increments of 1U (A CubeSat unit, or 1U, is roughly equivalent to a 4-inch box, or 10x10x10 centimeters). The RainCube antenna has to be small enough to be crammed into a 1.5U container; the entire satellite is about as big as a cereal box.

"It's like pulling a rabbit out of a hat," said Nacer Chahat, a specialist in antenna design at our Jet Propulsion Laboratory. "Shrinking the size of the radar is a challenge for us. As space engineers, we usually have lots of volume, so building antennas packed into a small volume isn't something we're trained to do."

image

That small antenna will deploy in space, like an upside-down umbrella. To maintain its small size, the antenna relies on the high-frequency Ka-band wavelength – good for profiling rain and snow. Ka-band also allows for an exponential increase in sending data over long distances, making it the perfect tool for telecommunications.

Peering Into Clouds

image

TEMPEST-D will also study weather. Temporal Experiment for Storms and Tropical Systems – Demonstration (TEMPEST-D) has satellite technology with the potential to measure cloud and precipitation processes on a global basis. These measurements help improve understanding of Earth’s water cycle and weather predictions, particularly conditions inside storms.

image

TEMPEST-D millimeter-wave observations have the ability to penetrate into clouds to where precipitation initiation occurs. By measuring the evolution of clouds from the moment of the onset of precipitation, a future TEMPEST constellation mission could improve weather forecasting and improve our understanding of cloud processes, essential to understanding climate change.

Cutting Through the Noise

image

CubeRRT, also the size of a cereal box, will space test a small component designed to detect and filter radio frequency interference (RFI). RFI is everywhere, from cellphones, radio and TV transmissions, satellite broadcasts and other sources. You probably recognize it as that annoying static when you can’t seem to get your favorite radio station to come in clearly because another station is nearby on the dial.

image

The same interference that causes radio static also affects the quality of data that instruments like microwave radiometers collect. As the number of RFI-causing devices increases globally, our satellite instruments – specifically, microwave radiometers that gather data on soil moisture, meteorology, climate and more – will be more challenged in collecting high-quality data.

That’s where CubeSat Radiometer Radio frequency interference Technology (CubeRRT) comes in. The small satellite will be carrying a new technology to detect and filter any RFI the satellite encounters in real-time from space. This will reduce the amount of data that needs to be transmitted back to Earth – increasing the quality of important weather and climate measurements.

Searching the Halo of the Milky Way

image

Did you know that we’re still looking for half of the normal matter that makes up the universe? Scientists have taken a census of all the stars, galaxies and clusters of galaxies — and we’re coming up short, based on what we know about the early days of the cosmos.

That missing matter might be hiding in tendrils of hot gas between galaxies. Or it might be in the halos of hot gas around individual galaxies like our own Milky Way. But if it’s there, why haven’t we seen it? It could be that it’s so hot that it glows in a spectrum of X-rays we haven’t looked at before.

image

Image Credit: Blue Canyon Technologies

Enter HaloSat. Led by the University of Iowa, HaloSat will search the halo of the Milky Way for the emissions oxygen gives off at these very high temperatures. Most other X-ray satellites look at narrow patches of the sky and at individual sources. HaloSat will look at large swaths of the sky at a time, which will help us figure out the geometry of the halo — whether it surrounds the galaxy more like a fried egg or a sphere. Knowing the halo’s shape will in turn help us figure out the mass, which may help us discover if the universe’s missing matter is in galactic halos.

CubeSats for All

Small satellites benefit Earth and its people (us!) in multiple ways. From Earth imaging satellites that help meteorologists to predict storm strengths and direction, to satellites that focus on technology demonstrations to help determine what materials function best in a microgravity environment, the science enabled by CubeSats is diverse. 

image

They are also a pathway to space science for students. Our CubeSat Launch initiative (CSLI) provides access to space for small satellites developed by our Centers and programs, educational institutions and nonprofit organizations. Since the program began, more than 50 educational CubeSats have flown. In 2016, students built the first CubeSat deployed into space by an elementary school.

Learn more about CubeSats HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

Solar System: Things to Know This Week

Go for Venus! Fifty-five years ago this week, Mariner 2, the first fully successful mission to explore another planet launched from Cape Canaveral in Florida. Here are 10 things to know about Mariner 2.

1. Interplanetary Cruise 

image

On August 27, 1962, Mariner 2 launched on a three and a half month journey to Venus. The little spacecraft flew within 22,000 miles (about 35,000 kilometers) of the planet. 

2. Quick Study 

image

Mariner 2's scan of Venus lasted only 42 minutes. And, like most of our visits to new places, the mission rewrote the books on what we know about Earth's sister planet.

3. Hot Planet 

image

The spacecraft showed that surface temperature on Venus was hot enough to melt lead: at least 797 degrees Fahrenheit (425 degrees Celsius) on both the day and night sides.

4. Continuous Clouds 

The clouds that make Venus shine so bright in Earth's skies are dozens of miles thick and permanent. It's always cloudy on Venus, and the thick clouds trap heat - contributing to a runaway "greenhouse effect."

5. Night Light 

image

Those clouds are why Venus shines so brightly in Earth's night sky. The clouds reflect and scatter sunlight, making Venus second only to our Moon in celestial brightness.

6. Under Pressure 

Venus' clouds also create crushing pressure. Mariner 2's scan revealed pressure on the surface of Venus is equal to pressure thousands of feet under Earth's deepest oceans.

7. Slow Turn 

Mariner 2 found Venus rotates very slowly, and in the opposite direction of most planets in our solar system.

8. Space Travel Is Tough 

Mariner 2 was a remarkable accomplishment, considering that in 1962 engineers were still in the very early stages of figuring out how operate spacecraft beyond Earth orbit. The first five interplanetary missions launched - by the U.S. and Soviet Union, the only two spacefaring nations at the time - were unsuccessful.

9. Not Ready for Its Close Up 

Mariner 2 carried no cameras. The first close-up pictures of Venus came from NASA's Mariner 10 in 1974.  

10. Hot Shot 

image

The first (and still incredibly rare) photo of the surface of Venus was taken by the Soviet Venera 9 lander, which survived for a little more than a minute under the crushing pressure and intense heat on the ground.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
Aboard The International Space Station, Astronaut Thomas Pesquet of The European Space Agency Snapped

Aboard the International Space Station, astronaut Thomas Pesquet of the European Space Agency snapped this photo and wrote, 'The view at night recently has been simply magnificent: few clouds, intense #aurora. I can't look away from the windows.' 

The dancing lights of the aurora provide stunning views, but also capture the imagination of scientists who study incoming energy and particles from the sun. Aurora are one effect of such energetic particles, which can speed out from the sun both in a steady stream called the solar wind and due to giant eruptions known as coronal mass ejections or CMEs. Credit: NASA/ESA

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • wellness-connect
    wellness-connect liked this · 3 years ago
  • tiboragios
    tiboragios liked this · 3 years ago
  • sailorsolar-star
    sailorsolar-star liked this · 3 years ago
  • nommethemba
    nommethemba liked this · 3 years ago
  • biscuitbarage
    biscuitbarage liked this · 3 years ago
  • bibabyluvharry
    bibabyluvharry liked this · 4 years ago
  • capetownlover
    capetownlover liked this · 4 years ago
  • sinatra333
    sinatra333 liked this · 4 years ago
  • cutekeencat
    cutekeencat liked this · 4 years ago
  • el-ast-ic-heart
    el-ast-ic-heart liked this · 4 years ago
  • honey-bees-stuff
    honey-bees-stuff reblogged this · 4 years ago
  • jaclynwashere
    jaclynwashere reblogged this · 4 years ago
  • destofcookie
    destofcookie liked this · 4 years ago
  • monamelissa
    monamelissa liked this · 4 years ago
  • mrorganizedlikes
    mrorganizedlikes reblogged this · 4 years ago
  • obliviousbitchstuff
    obliviousbitchstuff liked this · 4 years ago
  • sleep-deprived-book-nerd
    sleep-deprived-book-nerd liked this · 4 years ago
  • aladwanivip
    aladwanivip reblogged this · 4 years ago
  • aladwanivip
    aladwanivip liked this · 4 years ago
  • marinadi1314
    marinadi1314 liked this · 5 years ago
  • culmaer
    culmaer liked this · 5 years ago
  • intranced
    intranced liked this · 5 years ago
  • sirlance18
    sirlance18 liked this · 5 years ago
  • dimwen
    dimwen liked this · 5 years ago
  • sweeetlife
    sweeetlife liked this · 5 years ago
  • reddog1984
    reddog1984 reblogged this · 5 years ago
  • princessggowon
    princessggowon liked this · 5 years ago
  • tiredtarn-blog
    tiredtarn-blog liked this · 5 years ago
  • alanislua
    alanislua liked this · 5 years ago
  • krishgbv
    krishgbv liked this · 5 years ago
  • crusader1997
    crusader1997 liked this · 5 years ago
  • doctorcoolata
    doctorcoolata liked this · 5 years ago
  • mike-delta-yankee
    mike-delta-yankee liked this · 5 years ago
  • parkinglotfistfight
    parkinglotfistfight reblogged this · 5 years ago
  • remembermynameyoullbescreamingit
    remembermynameyoullbescreamingit reblogged this · 5 years ago
  • petrichor-and-panacea
    petrichor-and-panacea reblogged this · 5 years ago
  • faithitsrighinthename
    faithitsrighinthename liked this · 5 years ago
  • skylark253
    skylark253 liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags