A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards astronauts will encounter on a continual basis into five classifications.
The variance of gravity fields that astronauts will encounter on a mission to Mars is the fourth hazard.
On Mars, astronauts would need to live and work in three-eighths of Earth’s gravitational pull for up to two years. Additionally, on the six-month trek between the planets, explorers will experience total weightlessness.
Besides Mars and deep space there is a third gravity field that must be considered. When astronauts finally return home they will need to readapt many of the systems in their bodies to Earth’s gravity.
To further complicate the problem, when astronauts transition from one gravity field to another, it’s usually quite an intense experience. Blasting off from the surface of a planet or a hurdling descent through an atmosphere is many times the force of gravity.
Research is being conducted to ensure that astronauts stay healthy before, during and after their mission. Specifically researchers study astronauts’ vision, fine motor skills, fluid distribution, exercise protocols and response to pharmaceuticals.
Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including gravity. To learn more, and find out what NASA’s Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of gravity with Peter Norsk, Senior Research Director/ Element Scientist at the Johnson Space Center.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
NASA honored the first class of astronaut candidates to graduate under the Artemis program on Friday, Jan. 10, at our Johnson Space Center in Houston.
Out of a record 18,000 applicants, the 11 new astronauts, alongside two from the Canadian Space Agency, have completed two years of training and are now eligible for spaceflight. One day they could embark on missions to the International Space Station, the Moon and even Mars.
Astronauts have been training in T-38 jets since 1957 because the sleek, white jets require crew members to think quickly in dynamic situations and to make decisions that have real consequences. This type of mental experience is critical to preparing for the rigors of spaceflight. It also familiarizes astronaut candidates with checklists and procedures. To check off this training criteria, candidates must be able to safely operate in the T-38 as either a pilot or back seater.
We are currently flying astronauts to the International Space Station every few months. Astronauts aboard the space station are conducting experiments benefiting humanity on Earth and teaching us how to live longer in space. Astronaut candidates learn to operate and maintain the complex systems aboard the space station as part of their basic training.
Spacewalks are the hardest thing, physically and mentally, that astronauts do. Astronaut candidates must demonstrate the skills to complete complex spacewalks in our Neutral Buoyancy Laboratory (giant pool used to simulate weightlessness). In order to do so, they will train on the life support systems within the spacesuit, how to handle emergency situations that can arise and how to work effectively as a team to repair the many critical systems aboard the International Space Station to keep it functioning as our science laboratory in space.
Astronaut candidates learn the coordinate systems, terminology and how to operate the space station’s two robotic arms called Canadarm2 and Dextre. They train in Canada for a two-week session where they develop more complex robotics skills including capturing visiting cargo vehicles with the arm. The arm, built by the Canadian Space Agency, is capable of handling large cargo and hardware and it helped build the entire space station. It has latches on either end, allowing it to be moved by both flight controllers on the ground and astronauts in space to various parts of the station.
The official languages of the International Space Station are English and Russian. All crew members – regardless of what country they come from – are required to know both. NASA astronauts train with their Russian crew mates so it makes sense that they should be able to speak Russian. Astronaut candidates start learning the language at the beginning of their training and train every week, as their schedule allows.
After completing this general training, the new astronauts could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on our new Orion spacecraft and Space Launch System rocket.
Watch a recording of the astronaut candidate graduation ceremony on our YouTube channel.
This spring, we’ll once again be accepting applications for the next class of astronauts! Stay tuned to www.nasa.gov/newastronauts for upcoming information on how you can explore places like the Moon and Mars.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Vehicle Assembly Building, or VAB, at our Kennedy Space Center in Florida, is the only facility where assembly of a rocket occurred that carried humans beyond low-Earth orbit and on to the Moon. For 30 years, its facilities and assets were used during the Space Shuttle Program and are now available to commercial partners as part of our agency’s plan in support of a multi-user spaceport. To celebrate the VAB’s continued contribution to humanity’s space exploration endeavors, we’ve put together five out-of-this-world facts for you!
Aerial view of the Vehicle Assembly Building with a mobile launch tower atop a crawler transporter approaching the building.
An Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower (LUT) atop a crawler-transporter move from the Vehicle Assembly Building (VAB) on the way to Pad A on May 25, 1966.
Workers painting the Flag on the Vehicle Assembly Building on January 2, 2007.
A mobile launcher, atop crawler-transporter 2, begins the move into High Bay 3 at the Vehicle Assembly Building (VAB) on Sept. 8, 2018.
A model of Northrop Grumman’s OmegA launch vehicle is flanked by the U.S. flag and a flag bearing the OmegA logo during a ribbon-cutting ceremony Aug. 16 in High Bay 2 of the Vehicle Assembly Building.
Whether the rockets and spacecraft are going into Earth orbit or being sent into deep space, the VAB will have the infrastructure to prepare them for their missions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Do you remember the last time you stayed awake all night? Maybe you had a major exam, or flew across the ocean. How did you feel the following day? The time at which you would normally feel sleepy was probably different from usual. Your eyes “told” you that it was day, time for work or school. Your brain or muscles disagreed. They “told” you that it was middle of the night, and that you should sleep.
Changing when you sleep, or being in areas where daytime and nighttime are “off-schedule”, affects your circadian rhythm. The circadian rhythm exists in humans as a roughly 24-hour clock that prompts us to sleep or wake.
The European Space Agency’s experiment, Circadian Rhythms, investigates the role of this “biological clock” and its changes during spaceflight. Researchers hypothesize that a non-24-hour cycle of light and dark affects crew members’ circadian rhythms. Understanding the effects of life in space on astronauts’ circadian rhythms may help improve performance and health for future crew members.
Researchers collect data on astronaut’s circadian rhythms by using a “double-sensor,” which measures the temperature at the core of the body. The crew attaches one sensor to their head, and the other to their chest.
Based on results from this research, future crew members could more accurately adjust their sleep, work and physical activity scheduled to accommodate natural circadian cycles, which could improve productivity and health.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:
1. It’s Lunacy, Whether by Day or Night
What’s Up in the night sky during November? See all the phases of the moon by day and by night, and learn how to look for the Apollo landing sites. Just after sunset on November 13 and 14, look near the setting sun in the western sky to see the moon as a slender crescent. For more, catch the latest edition of the monthly “What’s Up” Tumblr breakdown.
2. Answer to Longstanding Mars Mystery is Blowin’ in the Wind
What transformed Mars from a warm and wet environment, one that might have supported surface life, to the cold, arid planet it is today? Data from our Mars Atmosphere and Volatile Evolution (MAVEN) mission pins much of the blame on the sun. Streams of charged solar particles crash against the Martian atmosphere, and without much of a magnetic field there to deflect the onslaught, over time the solar wind has stripped the air away.
3. Orbital Maneuvers in the Dark
The New Horizons mission team has set a new record. They recently performed the last in a series of trajectory changes that set the spacecraft on a course for an encounter with a Kuiper Belt object in January 2019. The Kuiper Belt consists of small bodies that orbit the sun a billion miles or more beyond Pluto. These latest course maneuvers were the most distant trajectory corrections ever performed by any spacecraft.
4. Visit Venus (But Not Really — You’d Fry)
Mars isn’t the only available destination. You can visit all the planets, moons and small worlds of the solar system anytime, right from your computer or handheld device. Just peruse our planets page, where you’ll find everything from basic facts about each body to the latest pictures and discoveries. Visit Venus HERE.
5. Titan Then and Now
Nov. 12 marks the 35th anniversary of Voyager 1’s Saturn flyby in 1980. Voyager saw Saturn’s enshrouded, planet-sized moon Titan as a featureless ball. In recent years, the Cassini mission haas revealed Titan in detail as a complex world. The spacecraft has peered beneath its clouds, and even delivered a probe to its encounter, which will include infrared scans, as well as using visible light cameras to look for methane clouds in the atmosphere.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We live on a water planet. The ocean covers a huge part of the Earth's surface – earning it the name Blue Marble.
The ocean is one of Earth’s largest ecosystems and helps moderate Earth’s climate. NASA scientists spend a lot of time studying the ocean and how it is changing as Earth’s climate changes.
In the last few years, NASA has launched an array of missions dedicated to studying this precious part of our planet, with more to come. For World Oceans Month, which starts in June, here are new ways NASA studies the ocean.
A new NASA mission called PACE will see Earth’s oceans in more color than ever before. The color of the ocean is determined by the interaction of sunlight with substances or particles present in seawater.
Scheduled to launch in 2024, PACE will help scientists assess ocean health by measuring the distribution of phytoplankton, tiny plants and algae that sustain the marine food web. PACE will also continue measuring key atmospheric variables associated with air quality and Earth's climate.
The SWOT satellite, launched in late 2022, is studying Earth’s freshwater – from oceans and coasts to rivers, lakes and more – to create the first global survey of Earth’s surface water.
SWOT is able to measure the elevation of water, observing how major bodies of water are changing and detecting ocean features. The data SWOT collects will help scientists assess water resources, track regional sea level changes, monitor changing coastlines, and observe small ocean currents and eddies.
With research aircraft, a research ship, and autonomous ocean instruments like gliders, NASA’s S-MODE mission is setting sail to study Earth’s oceans up close. Their goal? To understand ocean whirlpools, eddies and currents.
These swirling ocean features drive the give-and-take of nutrients and energy between the ocean and atmosphere and, ultimately, help shape Earth’s climate.
NASA’s HawkEye instrument collects ocean color data and captures gorgeous images of Earth from its orbit just over 355 miles (575 kilometers) above Earth’s surface. It’s also aboard a tiny satellite measuring just 10cm x 10 cm x 30 cm – about the size of a shoebox!
NASA is currently designing a new space-based instrument called GLIMR that will help scientists observe and monitor oceans throughout the Gulf of Mexico, the southeastern U.S. coastline and the Amazon River plume that stretches to the Atlantic Ocean. GLIMR will also provide important information about oil spills, harmful algae blooms, water quality and more to local agencies.
The U.S.-European Sentinel-6 Michael Freilich satellite is helping researchers measure the height of the ocean - a key component in understanding how Earth’s climate is changing.
This mission, which launched in 2020, has a serious job to do. It’s not only helping meteorologists improve their weather forecasts, but it’s helping researchers understand how climate change is changing Earth’s coastlines in real time.
Make sure to follow us on Tumblr for your regular dose of space!
Why are bacteria resistant polymers being experimented, specifically in microgravity?
As an intense winter storm approaches the mid-Atlantic this weekend, our satellites watch from above. The storm is expected to produce a wade swath of more than 2 feet of snow in some areas.
The below supercomputer simulation crunched the data to provide a look at the flow of clouds from storm systems around the globe, including the developing blizzard across the eastern United States.
This storm won’t only have a snowy impact on the mid-Atlantic region, but will also cause severe weather in the Gulf Coast. Satellites observe extreme rainfall in the area.
Data from NASA-NOAA Suomi NPP satellite and NOAA’s GOES-East satellite are being used to create images and animation of the movement of this powerful storm. For updates, visit: http://www.nasa.gov/feature/goddard/2016/nasa-sees-major-winter-storm-headed-for-eastern-us
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We are kicking off Hispanic Heritage Month a little early this year, and astronaut Serena M. Auñón-Chancellor will be taking your questions in an Answer Time session on Thursday, September 12 from 12pm - 1pm ET here on NASA’s Tumblr! Find out what it’s like to be a NASA astronaut and learn more about her Cuban-American heritage. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!
Dr. Serena M. Auñón-Chancellor began working with NASA as a Flight Surgeon in 2006 and was later selected as a NASA astronaut in 2009. Her first flight was from Jun 6- Dec. 20, 2018 where she served as Flight Engineer on the International Space Station as a member of Expeditions 56 and 57. During these missions, the crew contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science – including investigations into a new cancer treatment!
She has a Bachelor of Science in Electrical Engineering from The George Washington University, Washington, D.C and a Doctorate of Medicine from The University of Texas - Health Science Center at Houston.
She spent 2 months in Antarctica from 2010 to 2011 searching for meteorites as part of the ANSMET expedition.
She served as an Aquanaut on the NEEMO 20 mission in the Aquarius underwater laboratory, which is used to prepare for living and working in space.
She logged 197 days in space during Expeditions 56 and 57.
Follow Serena on Twitter at @AstroSerena and follow NASA on Tumblr for your regular dose of space.
2016 was hotter than 2015, the previous record. And 2015 hotter than 2014, the previous record year.
These record temperatures are all part of a warming trend that dates back to the late-19th century, largely caused by human emissions of carbon dioxide and other gases into the atmosphere.
A lot of this warming trend has been in the last 35 years. In fact, 16 of the 17 warmest years on record have been since 2001.
To help us gather this data, planes and boats travel out from Antarctic research stations to gather information from the Arctic region, in addition to space-based observatories.
Scientists at our Goddard Institute for Space Studies analyze data from 6,300 weather stations, observations of sea surface temperature and Antarctic research stations, all to determine how the average surface temperature is changing.
Scientists at the National Oceanic and Atmospheric Administration separately analyze the same data to track global temperature.
The two agencies reached the same conclusion about 2016’s record-setting heat.
Variations in local weather mean parts of the globe did not experience a record-setting year. Some places still had snow, cold weather and below-record temperatures, but the overall global average was higher than any previous year.
For instance, according to NOAA the average temperature in the 48 contiguous United States was not quite as high as in 2015, which still holds the record.
A combination of space- and land-based measurements gives us a unique perspective on Earth, the only planet we know of that supports life.
To learn more about the global temperature record or see how average surface temperature for individual months, visit: http://data.giss.nasa.gov/gistemp/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Only a few humans ever get to experience the awe-inspiring vantage point provided by the space station, but a new virtual reality (VR) experience, Space Explorers: The ISS Experience (ISS Experience), attempts to bring this perspective back to Earth for the rest of us.
Partnering with the ISS National Lab and Time, a team from Felix and Paul Studios launched a high quality 360 degree camera to space to help tell the story of science and life aboard the orbiting laboratory.
The project, currently in the process of being filmed by the station astronauts themselves, serves as an outreach project as well a technology demonstration, testing the limits of filming in the harsh environment of space.
The camera flew to the station on 16th SpaceX commercial resupply services mission in December 2018 along with a number of other scientific experiments.
Since then, the team has recorded many moments, including the SPHERES robots flying around the station (see below) , the growing and harvesting of vegetables, jam session among the astronauts, crew meals and the arrival of new astronauts.
So far, the footage coming back seems to be achieving the goal of immersing audiences in science and life aboard the space station. NASA astronaut Sunita Williams got the chance to watch some of the initial footage and says it was like I was back on the station.
While most of the filming has been completed, the biggest technical challenge is yet to come: capturing a spacewalk in virtual reality. The team expects to launch a new camera for spacewalk filming and begin production of spacewalk filming in 2020.
Learn more about ISS Experience here.
For daily updates, follow @ISS_Research on Twitter, Space Station Research and Technology News or our Facebook. Follow the ISS National Lab for information on its sponsored investigations. For opportunities to see the space station pass over your town, check out Spot the Station.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts