With the help of the NASA History Office, we’ve identified some of the most frequently asked questions surrounding the first time humans walked on the surface of another world. Read on and click here to check out our previous Apollo FAQs.
The six crews that landed on the Moon brought back 842 pounds (382 kilograms) of rocks, sand and dust from the lunar surface. Each time, they were transferred to Johnson Space Center’s Lunar Receiving Laboratory, a building that also housed the astronauts during their three weeks of quarantine. Today the building now houses other science divisions, but the lunar samples are preserved in the Lunar Sample Receiving Laboratory.
Built in 1979, the laboratory is the chief repository of the Apollo samples.
From these pieces of the Moon we learned that its chemical makeup is similar to that of Earth’s, with some differences. Studying the samples has yielded clues to the origins of the solar system. In March of 2019, we announced that three cases of pristine Moon samples will be unsealed for the first time in 50 years so that we can take advantage of the improved technology that exists today!
Did you know you might not have to travel far to see a piece of the Moon up close? Visit our Find a Moon Rock page to find out where you can visit a piece of the Moon.
Astronaut food has come a long way since the days of Project Mercury, our first human spaceflight program that ran from 1958-1963. Back then, astronauts “enjoyed” food in cube form or squeezed out of tubes. Early astronaut food menus were designed less for flavor and more for nutritional value, but that eventually shifted as technology evolved. Astronauts today can enjoy whole foods like apples, pizza and even tacos.
Apollo crews were the first to have hot water, making it easier to rehydrate their foods and improve its taste. They were also the first to use a “spoon bowl,” a plastic container that was somewhat like eating out of a Ziploc bag with a spoon. Here’s an example of a day’s menu for a voyage to the Moon:
Breakfast: bacon squares, strawberry cubes and an orange drink.
Lunch: beef and potatoes, applesauce and a brownie.
Dinner: salmon salad, chicken and rice, sugar cookie cubes and a pineapple grapefruit drink.
As Neil Armstrong and Buzz Aldrin worked on the lunar surface, Command Module pilot Michael Collins orbited the Moon, alone, for the next 21.5 hours. On board he ran systems checks, made surface observations and communicated with Mission Control when there wasn’t a communications blackout. Blackouts happened every time Collins went behind the Moon. In 2009, Collins wrote this in response to a flurry of media questions about the 40th anniversary of the mission:
Q. Circling the lonely Moon by yourself, the loneliest person in the universe, weren't you lonely? A. No. Far from feeling lonely or abandoned, I feel very much a part of what is taking place on the lunar surface. I know that I would be a liar or a fool if I said that I have the best of the three Apollo 11 seats, but I can say with truth and equanimity that I am perfectly satisfied with the one I have. This venture has been structured for three men, and I consider my third to be as necessary as either of the other two.”
Artemis missions to the Moon will mark humanity’s first permanent presence on another world. The first woman and the next man to explore the lunar surface will land where nobody has ever attempted to land before -- on the Moon’s south pole where there are billions of tons of water ice that can be used for oxygen and fuel. We don’t know yet what astronauts will bring back from this unexplored territory, but we do know that they will return with hope and inspiration for the next generation of explorers: the Artemis generation. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Just as the captains of the fictional 24th century Starfleet blazed a trail among the stars, the space shuttle Enterprise helped pave the way for future space exploration.
Fifty years ago, Star Trek debuted with the USS Enterprise as the main space-faring vessel used in much of the Star Trek universe. As such, the vessel holds a treasured place in the hearts of Star Trek fans and is as much of a character in the show as Kirk and Spock. Over three different series and a total of 14 seasons on TV and 13 feature films, the iterations of Enterprise have captured the imaginations and provided inspiration for its fans across the globe.
This brief history of the shuttle tells the tale of humanity's first reusable spacecraft. Space shuttles were first built in the late 1970s and were flown in space from 1981 to 2011. Their missions ranged from helping to build the International Space Station to repairing the Hubble Space Telescope.
It’s All In The Name
The first shuttle was originally to be named Constitution, celebrating the country’s bicentennial and was to be unveiled to the public on Constitution Day, Sept. 17, 1976. However, a massive letter-writing campaign by Star Trek fans prompted President Gerald Ford to suggest the change. In the above photo, we see the shuttle Enterprise rolled out in Palmdale, California, with cast members of Star Trek on Sept. 17, 1976.
To Boldly Go . . .
This circular red, white and blue emblem was the official insignia for the Space Shuttle Approach and Landing Test flights and became a model for future space shuttle mission patch designs, including placing the names of the crew on the patch . The four astronauts listed on the patch are:
Fred Haise., commander of the first crew
Charles Fullerton, pilot of the first crew
Joe Engle, commander of the second crew
Dick Truly, pilot of the second crew
First Impressions
In this image, Enterprise makes its first appearance mated to its boosters as it is slowly rolled to the huge Vehicle Assembly Building (VAB) at Kennedy Space Center. Although she never flew in space, shuttle Enterprise underwent a series of fit and function checks on the pad in preparation for the first launch of its sister craft, Columbia.
Not Meant To Be
Enterprise sits on Launch Complex 39 at Kennedy Space Center undergoing tests after completing its 3.5 mile journey from the VAB. Have you ever wondered why Enterprise never went into space? Converting Enterprise from a training vehicle to space-worthy one was too cost prohibitive, our engineers felt.
Engage
Commander Fred Haise and pilot Charles Fullerton are seen in the cockpit of Enterprise prior to the fifth and final Approach and Landing Test at Dryden Flight Research Center (Armstrong Flight Research Center). The tests were performed to learn about the landing characteristics of the shuttle.
It’s Been An Honor To Serve With You
The Enterprise’s two crews pose for a photo op at the Rockwell International Space Division's Orbiter assembly facility at Palmdale, California. They are (left to right) Charles Fullerton, Fred Haise, Joe Engle and Dick Truly.
Fair Winds And Following Seas
On July 6, 2012, the Enterprise, atop a barge, passes the Statue of Liberty on its way to the Intrepid Sea, Air and Space Museum, where is now permanently on display.
Learn more about Star Trek and NASA.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Spectacular death. Spectacular star. Your crushed heart remains bright from afar. You’re looking at a composite image of the Crab Nebula, located 6,500 light-years away. The white dot in the center — an extremely dense ball of neutrons just 12 miles across but with the same mass as our Sun — is all that remains from a star that exploded in 1054 A.D. Had the blast occurred 50 light-years away, its intense radiation would have wiped out most life forms on Earth. Spectacular death. Spectacular star. We’re grateful we can admire you from afar.
Dark, cold and whipped by supersonic winds, Neptune is the last of the hydrogen and helium gas giants in our solar system. More than 30 times as far from the sun as Earth, the planet takes almost 165 Earth years to orbit our sun! In fact, in 2011, Neptune completed its first orbit since its discovery in 1846.
Here are a few things you might not know about the windiest planet:
If the sun were as tall as a typical front door, the Earth would be the size of a nickel and Neptune would be about as big as a baseball.
Neptune orbits our sun, a star. Neptune is the eighth planet from the sun at a distance of about 4.5 billion km (2.8 billion miles) or 30.07 AU.
One day on Neptune takes about 16 hours (the time it takes for Neptune to rotate or spin once)
Neptune makes a complete orbit around the sun (a year in Neptunian time) in about 165 Earth years (60,190 Earth days)
Neptune has six rings
Voyager 2 is the only spacecraft to have visited Neptune
Neptune has 13 moons. They are named after various sea gods and nymphs in Greek mythology
Did you know that Neptune has storms?
Similar to Jupiter, Neptune has storms that create gigantic spots in its atmosphere…well, it did. When Voyager 2 flew past Neptune in 1989, it tracked and imaged the “Great Dark Spot” — a storm larger than the entire Earth! When the Hubble Space Telescope imaged Neptune the spot had disappeared, only to be replaced with two smaller storms, which in turn also disappeared.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our leadership hit the road to visit our commercial partners Lockheed Martin, Sierra Nevada Corp. and Ball Aerospace in Colorado. They were able to check the status of flight hardware, mission operations and even test virtual reality simulations that help these companies build spacecraft parts.
Let’s take a look at all the cool technology they got to see…
Lockheed Martin is the prime contractor building our Orion crew vehicle, the only spacecraft designed to take humans into deep space farther than they’ve ever gone before.
Acting NASA Deputy Administrator Lesa Roe and Acting NASA Administrator Robert Lightfoot are seen inside the CHIL…the Collaborative Human Immersive Laboratory at Lockheed Martin Space Systems in Littleton, Colo. Lockheed Martin’s CHIL enables collaboration between spacecraft design and manufacturing teams before physically producing hardware.
Cool shades! The ability to visualize engineering designs in virtual reality offers tremendous savings in time and money compared to using physical prototypes. Technicians can practice how to assemble and install components, the shop floor can validate tooling and work platform designs, and engineers can visualize performance characteristics like thermal, stress and aerodynamics, just like they are looking at the real thing.
This heat shield, which was used as a test article for the Mars Curiosity Rover, will now be used as the flight heat shield for the Mars 2020 rover mission.
Fun fact: Lockheed Martin has built every Mars heat shield and aeroshell for us since the Viking missions in 1976.
Here you can see Lockheed Martin’s Mission Support Area. Engineers in this room support six of our robotic planetary spacecraft: Mars Odyssey, Mars Reconnaissance Orbiter, MAVEN, Juno, OSIRIS-REx and Spitzer, which recently revealed the first known system of seven Earth-size planets around a single star, TRAPPIST-1. They work with NASA centers and the mission science teams to develop and send commands and monitor the health of the spacecraft.
See all the pictures from the Lockheed Martin visit HERE.
Next, Lightfoot and Roe went to Sierra Nevada Corporation in Louisville, Colo. to get an update about its Dream Chaser vehicle. This spacecraft will take cargo to and from the International Space Station as part of our commercial cargo program.
Here, Sierra Nevada Corporation’s Vice President of Space Exploration Systems Steve Lindsey (who is also a former test pilot and astronaut!) speaks with Lightfoot and Roe about the Dream Chaser Space System simulator.
Lightfoot climbed inside the Dream Chaser simulator where he “flew” the crew version of the spacecraft to a safe landing. This mock-up facility enables approach-and-landing simulations as well as other real-life situations.
See all the images from the Sierra Nevada visit HERE.
Lightfoot and Roe went over to Ball Aerospace to tour its facility. Ball is another one of our commercial aerospace partners and helps builds instruments that are on NASA spacecraft throughout the universe, including the Hubble Space Telescope and the New Horizons mission to Pluto. Ball designed and built the advanced optical technology and lightweight mirror system that will enable the James Webb Space Telescope to look 13.5 billion years back in time.
Looking into the clean room at Ball Aerospace’s facility in Boulder, Colo., the team can see the Ozone Mapping Profiler Suite. These sensors are used on spacecraft to track ozone measurements.
Here, the group stands in front of a thermal vacuum chamber used to test satellite optics. The Operation Land Imager-2 is being built for Landsat 9, a collaboration between NASA and the U.S. Geological Survey that will continue the Landsat Program’s 40-year data record monitoring the Earth’s landscapes from space.
See all the pictures from the Ball Aerospace visit HERE.
We recently marked a decade since a new era began in commercial spaceflight development for low-Earth orbit transportation. We inked agreements in 2006 to develop rockets and spacecraft capable of carrying cargo such as experiments and supplies to and from the International Space Station. Learn more about commercial space HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The International Space Station is a microgravity laboratory in which an international crew of six people live and work while traveling at a speed of five miles per second (or 17,500 miles per hour), orbiting Earth every 90 minutes.
That’s more than 2,643,342,240 miles traveled! Which is also like 10 round trips to Mars, OR nearly the distance to Neptune!
The space station has been in orbit for over 17 years, and during that time, over 1,922 research investigations have been performed. More than 1,200 scientific results publications have been produced as a result.
Important studies like the VEGGIE experiment, which is working to grow plants in microgravity, and the Twin’s Study, which is studying the impacts of microgravity on the human body, are helping us on our journey to Mars. Using this unique orbiting laboratory as a place to conduct research is helping us learn important things for future deep space missions.
There have even been 222 different people that have visited the space station. This includes the current crew that is working and living on orbit.
Did you know that the space station is the third brightest object in the sky? If you know when and where to look up, you can spot it on your own! Find out when and where to look up HERE.
On Snapchat? Watch today’s Live Story to discover more about the orbiting laboratory and get a tour of the station! You can also add ‘nasa’ on Snapchat to get a regular dose of space.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
As massive wildfires continue to rage in southern California, our satellites, people in space and aircraft are keeping an eye on the blazes from above.
This data and imagery not only gives us a better view of the activity, but also helps first responders plan their course of action.
A prolonged spell of dry weather primed the area for major fires. The largest of the blazes – the fast-moving Thomas fire in Ventura County – charred more than 65,000 acres.
Powerful Santa Ana winds fanned the flames and forecasters with the LA office of the National Weather Service warned that the region is in the midst of its strongest and longest Santa Ana wind event of the year.
These winds are hot, dry and ferocious. They can whip a small brush fire into a raging inferno in just hours.
Our Aqua satellite captured the above natural-color image on Dec. 5. Actively burning areas are outlined in red. Each hot spot is an area where the thermal detectors on the satellite recognized temperatures higher than the background.
On the same day, the European Space Agency’s Sentinel-2 satellite captured the data for the above false-color image of the burn scar. This image uses observations of visible, shortwave infrared and near infrared light.
From the vantage point of space, our satellites and astronauts are able to see a more comprehensive view of the activity happening on the ground.
The crew living and working 250 miles above Earth on the International Space Station passed over the fires on Dec. 6. The above view was taken by astronaut Randy Bresnik as the station passed over southern California.
During an engineering flight test of our Cloud-Aerosol Multi-Angle Lidar (CAMAL) instrument, a view from our ER-2 high-altitude research aircraft shows smoke plumes. From this vantage point at roughly 65,000 feet, the Thomas Fire was seen as it burned on Dec. 5.
Our satellites can even gather data and imagery of these wildfires at night. The above image on the right shows a nighttime view of the fires on Dec. 5.
For comparison, the image on the left shows what this region looked like the day before. Both images were taken by the Suomi NPP satellite, which saw the fires by using a special “day-night band” to detect light in a range of wavelengths from green to near-infrared and uses light intensification to detect dim signals.
Having the capability to see natural disasters, like these wildfires in southern California, provides first responders with valuable information that helps guide their action in the field.
For more wildfire updates, visit: nasa.gov/fires.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our solar system is huge, so let us break it down for you. Here are 5 things you should know this week:
1. From Pluto, with Love
Last Valentine’s Day, no one had even seen Pluto’s most famous feature, the heart-shaped Sputnik Planum. These days, the New Horizons spacecraft is sending more and more pictures back to Earth from its Pluto flyby last July. We received new ones almost on a weekly basis. For the latest love from the outer solar system, go HERE.
2. Saturn’s Rings: More (and Less) than Meets the Eye
The Cassini spacecraft is executing a series of maneuvers to raise its orbit above the plane of Saturn’s famous rings. This will offer some breathtaking views that you won’t want to miss. Meanwhile, Cassini scientists are learning surprising things, such as the fact that the most opaque sections of the rings are not necessarily the thickest.
3. Stay on Target
The Juno spacecraft recently completed a course correction maneuver to fine-tune its approach to Jupiter. After years of flight and millions of miles crossed, arrival time is now set to the minute: July 4th at 11:18 p.m. EST. See why we’re going to jupiter HERE.
4. The Many Lives of “Planet X”
The announcement of a potential new planet beyond Neptune creates an opportunity to look back at the ongoing search for new worlds in the unmapped reaches of our own solar system. Review what we’ve found so far, and what else might be out there HERE.
5. Answering the Call of Europa
There are a few places more intriguing that Jupiter’s icy moon, Europa, home to an underground ocean with all the ingredients necessary for potential life. We’re undertaking a new mission to investigate, and the project’s top manager and scientist will be giving a live lecture to detail their plans. Join Barry Goldstein and Bob Pappalardo on Feb. 11 at 10 p.m. EST for a live lecture series on Ustream.
Want to learn more? Read our full list of the 10 things to know this week HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The fantastical planets in Star Wars preceded our discovery of real planets outside our solar system…but fiction isn’t too far from the facts. When we send our spacecraft into the solar system and point our telescopes beyond, we often see things that seem taken right out of the Star Wars universe.
Saturn’s moon, Mimas, has become known as the "Death Star" moon because of how its 80-mile wide Herschel crater creates a resemblance to the Imperial battle station, especially when seen in this view from our Cassini spacecraft.
The most recently revealed exoplanet dubbed as Earth’s bigger, older cousin, Kepler-452b, might make a good stand-in for Coruscant — the high tech world seen in several Star Wars films whose surface is encased in a single, globe-spanning city. Kepler-452b belongs to a star system 1.5 billion years older than Earth’s! That would give any technologically adept species more than a billion-year jump ahead of us.
At 3,600 degrees Fahrenheit, CoRoT-7B is a HOT planet. Discovered in 2010 with France’s CoRoT satellite, it’s some 480 light-years away, and has a diameter 70% larger than Earth’s, with nearly five times the mass. Possibly the boiled-down remnant of a Saturn-sized planet, its orbit is so tight that its star looms much larger in its sky than our sun appears to us, keeping its sun-facing surface molten! This scorching planet orbiting close to its star could be a good analog for planet Mustafar from Star Wars.
Luke Skywalker’s home planet, Tatooine, is said to possess a harsh, desert environment, swept by sandstorms as it roasts under the glare of twin suns. Real exoplanets in the thrall of two or more suns are even harsher! Kepler-16b was the Kepler telescope’s first discovery of a planet in a “circumbinary” orbit (a.k.a, circling both stars, as opposed to just one, in a double star system). This planet, however, is likely cold, about the size of Saturn, and gaseous, though partly composed of rock.
Fictional Hoth is a frozen tundra that briefly serves as a base for the hidden Rebel Alliance. It’s also the nickname of real exoplanet OGLE-2005-BLG-390, a cold super-Earth whose surface temperature clocks in at minus 364 degrees Fahrenheit.
Kepler-22b, analog to the Star Wars planet Kamino…which was the birthplace of the army of clone soldiers, is a super-Earth that could be covered in a super ocean. The jury is still out on Kepler-22b’s true nature; at 2.4 times Earth’s radius, it might even be gaseous. But if the ocean world idea turns out to be right, we can envision a physically plausible Kamino-like planet.
Gas giants of all stripes populate the real exoplanet universe; in Star Wars, a gas giant called Bespin is home to a “Cloud City” actively involved in atmospheric mining. Mining the atmospheres of giant gas planets is a staple of science fiction. We too have examined the question, and found that gases such as helium-3 and hydrogen could theoretically be extracted from the atmospheres of Uranus and Neptune.
Endor, the forested realm of the Ewoks, orbits a gas giant. Exomoon detection is still in its infancy for scientists on Earth. However, a possible exomoon (a moon circling a distant planet) was observed in 2014 via microlensing. It will remain unconfirmed, however, since each microlensing event can be seen only once.
Discover more about exoplanets here: https://exoplanets.jpl.nasa.gov/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
(WARNING: Don't try any of this on Earth—except the last one.)
Janssen aka 55 Cancri e
Hang your steak on a fishing pole and dangle your meat over the boiling pools of lava on this possible magma world. Try two to three minutes on each side to get an ashy feast of deliciousness.
Dimidium aka 51 Pegasi b
Set your grill to 1800 degrees Fahrenheit (982 degrees Celsius) or hop onto the first exoplanet discovered and get a perfect char on your hot dogs. By the time your dogs are done, it’ll be New Year’s Eve, because a year on this planet is only four days long.
HD 40307 g
Super air fry your duck on this Super Earth, as you skydive in the intense gravity of a planet twice as massive as Earth. Why are you air frying a duck? We don’t know. Why are you skydiving on an exoplanet? We’re not judging.
HAT-P-11b
I’ve got steaks, they’re multiplying/and I’m looooosing control. Cause the power this planet is supplying/is electrifying!
Sear your tuna to perfection in the lightning strikes that could flash across the stormy skies of this Neptune-like planet named HAT-P-11b.
Kepler-186f
Tired of all that meat? Try a multi-colored salad with the vibrant plants that could grow under the red sun of this Earth-sized planet. But it could also be a lifeless rock, so BYOB (bring your own barbecue).
Kepler-70b
Don’t take too long to prep your vegetables for the grill! The hottest planet on record will flash-incinerate your veggies in seconds!
WASP-12b
Picture this: You are pressure cooking your chicken on a hot gas giant in the shape of an egg. And you’re under pressure to cook fast, because this gas giant is being pulled apart by its nearby star.
Kepler-16b
Evenly cook your ribs in a dual convection oven under the dual stars of this “Tatooine.” Kick back and watch your two shadows grow in the fading light of a double sunset.
Venus
Order in for a staycation in our own solar system. The smell of rotten eggs rising from the clouds of sulfuric acid and choking carbon dioxide will put you off cooking, so get that meal to go.
Earth
Sometimes the best vacations are the ones you take at home. Flip your burgers on the only planet where you can breathe the atmosphere.
Grill us on Twitter and tell us how bad our jokes are.
Read the full version of this week’s ‘Solar System: 10 Things to Know’ Article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Out of all the theories and fantasies created around blackholes, which of them, in your opinion, do you think could come closest to reality?
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts