Sorry, I Don't Know Much About Earth Science (though It Sounds Very Intriguing), But - What Exactly Is

sorry, i don't know much about earth science (though it sounds very intriguing), but - what exactly is it that you do? does it take a lot of time? is it fun but challenging? was it hard to get your job? have you always wanted to work with earth science?

More Posts from Nasa and Others

5 years ago
Say Hello To The Carina Nebula 👋 

Say hello to the Carina Nebula 👋 

One of the largest panoramic images ever taken with our Hubble Space Telescope’s cameras, this image features a stunning 50-light-year-wide view of the intense central region of the Carina Nebula - a strange stellar nursery. The nebula is sculpted by the action of outflowing winds and scorching ultraviolet radiation from the monster stars that inhabit this inferno. The Carina Nebula lies within our own galaxy, about 7,500 light-years away. 

At the heart of the nebula is Eta Carinae — a system of two stars. The larger star, Eta Car A, is around 100 times as massive as the Sun and 5 million times as luminous! Stars of this size are extremely rare; our galaxy is home to hundreds of billions of stars, but only tens of them are as massive as Eta Car A.

This view of the Carina Nebula provided astronomers the opportunity to explore the process of star birth at a new level of detail. The hurricane-strength blast of stellar winds and blistering ultraviolet radiation within the cavity are now compressing the surrounding walls of cold hydrogen. This is triggering a second stage of new star formation. Hubble has also enabled scientists to generate 3-D models that reveal never-before-seen features of the interactions between the Eta Carinae star system.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

Questions coming up from….

@monicagellar: Is it open for international students?

@Anonymous: How should high school students get involved?

@Anonymous: Can I apply if my subjects are physics and chemistry in college

@unsuspicious-nobody: Do you have plans to repeat this/do something similar for students in the future?


Tags
8 years ago

Solar System: Things to Know This Week

Our solar system is huge, let us break it down for you. Here are a few things you should know this week: 

1. Closeup of a King

Solar System: Things To Know This Week

For the first time since it entered orbit around Jupiter in July, our Juno spacecraft has flown close to the king of planets—this time with its eyes wide open. During the long, initial orbit, Juno mission managers spent time checking out the spacecraft "from stem to stern," but the science instruments were turned off as a precaution. During this latest pass, Juno's camera and other instruments were collecting data the whole time. Initial reports show that all went well, and the team has released a new close-up view that Juno captured of Jupiter's north polar region. We can expect to see more close-up pictures of Jupiter and other data this week.

+Check in with Juno

2. Getting Ready to Rocket

Solar System: Things To Know This Week

Our OSIRIS-REx mission leaves Earth next week, the first leg of a journey that will take it out to an asteroid called Bennu. The mission will map the asteroid, study its properties in detail, then collect a physical sample to send back home to Earth. The ambitious endeavor is slated to start off on Sept. 8.

+See what it takes to prep for a deep space launch

3. New Moon Rising

Solar System: Things To Know This Week

The Lunar Reconnaissance Orbiter (LRO) has already mapped the entire surface of Earth's moon in brilliant detail, but the mission isn't over yet. Lunar explorers still have questions, and LRO is poised to help answer them.

+See what’s next for the mission

4. A Mock-Eclipse Now

Solar System: Things To Know This Week

We don't have to wait until next year to see the moon cross in front of the sun. From its vantage point in deep space, our Solar Dynamics Observatory (SDO) sometimes sees just that. Such an event is expected on Sept. 1.

+See the latest sun pictures from SDO

5. Jupiter’s Cousins

Solar System: Things To Know This Week

Our galaxy is home to a bewildering variety of Jupiter-like worlds: hot ones, cold ones, giant versions of our own giant, pint-sized pretenders only half as big around. Astronomers say that in our galaxy alone, a billion or more such Jupiter-like worlds could be orbiting stars other than our sun. And we can use them to gain a better understanding of our solar system and our galactic environment, including the prospects for finding life.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

Astrobiology: The Story of our Search for Life in the Universe

Astrobiologists study the origin, evolution, and distribution of life in the universe. This includes identifying evidence left behind by life that once survived on the ancient Earth, and extends to the search for life beyond our planet.

When looking for signs of life on other worlds, what are they looking for?

Things called biosignatures. For example, when you sign a piece of paper, your signature is evidence of your existence. Similarly, biosignatures are anything that can prove that life was once, or is, present in an environment.

Astrobiology: The Story Of Our Search For Life In The Universe

If we were very very lucky, we might spot something we know is life with a powerful telescope or receive a "phone call" or radio signal from alien civilizations. Those types of biosignatures would be obvious. But they would only let us identify advanced life.

Astrobiology: The Story Of Our Search For Life In The Universe

For most of Earth’s history (billions of years), single-celled life like bacteria and archaea have been around. Humans have only been making radio transmissions for hundreds of years. So we have a better chance of finding life if we look for signs that have been around for very long periods of time.

Astrobiology: The Story Of Our Search For Life In The Universe

Patterns in ancient rocks that were created by life are a great example. That can be anything like a dinosaur footprint or structures built by microorganisms, like stromatolites.

Astrobiology: The Story Of Our Search For Life In The Universe

Molecules can also be biosignatures, like DNA left behind for detectives to discover. But DNA doesn’t last very long on its own in most environments, so other molecules like lipids (like natural oils, wax, and fat) might be a better choice if you are looking for signatures of life from millions (or billions) of years ago.

Even the balance of gases in a planet’s atmosphere can be a sign of past or present life. On Earth, biology plays a major role in maintaining the delicate composition of gases like nitrogen, oxygen, and carbon dioxide in the air that we breathe.

These are just a few examples of signs astrobiologists look for when searching for life amongst the stars! Research into these biosignatures inform many of our biggest missions, from observatories like the Hubble Space Telescope and the Webb Space Telescope to our Mars Sample Return endeavor.

Want to learn more about the search for life? Check out the latest issue of our comic-book style graphic history novel, Astrobiology: The Story of our Search for Life in the Universe. This new chapter is all about biosignatures.

Explore life in the universe with us by following NASA Astrobiology on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

Spilling the Sun’s Secrets

You might think you know the Sun: It looks quiet and unchanging. But the Sun has secrets that scientists have been trying to figure out for decades.  

One of our new missions — Parker Solar Probe — is aiming to spill the Sun’s secrets and shed new light on our neighbor in the sky.

Spilling The Sun’s Secrets

Even though it’s 93 million miles away, the Sun is our nearest and best laboratory for understanding the inner workings of stars everywhere. We’ve been spying on the Sun with a fleet of satellites for decades, but we’ve never gotten a close-up of our nearest star.

This summer, Parker Solar Probe is launching into an orbit that will take it far closer to the Sun than any instrument has ever gone. It will fly close enough to touch the Sun, sweeping through the outer atmosphere — the corona — 4 million miles above the surface.

Spilling The Sun’s Secrets

This unique viewpoint will do a lot more than provide gossip on the Sun. Scientists will take measurements to help us understand the Sun’s secrets — including those that can affect Earth.

Parker Solar Probe is equipped with four suites of instruments that will take detailed measurements from within the Sun's corona, all protected by a special heat shield to keep them safe and cool in the Sun's ferocious heat.

Spilling The Sun’s Secrets

The corona itself is home to one of the Sun’s biggest secrets: The corona's mysteriously high temperatures. The corona, a region of the Sun’s outer atmosphere, is hundreds of times hotter than the surface below. That's counterintuitive, like if you got warmer the farther you walked from a campfire, but scientists don’t yet know why that's the case.

Spilling The Sun’s Secrets

Some think the excess heat is delivered by electromagnetic waves called Alfvén waves moving outwards from the Sun’s surface. Others think it might be due to nanoflares — bomb-like explosions that occur on the Sun’s surface, similar to the flares we can see with telescopes from Earth, but smaller and much more frequent. Either way, Parker Solar Probe's measurements direct from this region itself should help us pin down what's really going on.

Spilling The Sun’s Secrets

We also want to find out what exactly accelerates the solar wind — the Sun's constant outpouring of material that rushes out at a million miles per hour and fills the Solar System far past the orbit of Pluto. The solar wind can cause space weather when it reaches Earth — triggering things like the aurora, satellite problems, and even, in rare cases, power outages.

We know where the solar wind comes from, and that it gains its speed somewhere in the corona, but the exact mechanism of that acceleration is a mystery. By sampling particles directly at the scene of the crime, scientists hope Parker Solar Probe can help crack this case.

Spilling The Sun’s Secrets

Parker Solar Probe should also help us uncover the secrets of some of the fastest particles from the Sun. Solar energetic particles can reach speeds of more than 50% the speed of light, and they can interfere with satellites with little warning because of how fast they move. We don't know how they get so fast — but it's another mystery that should be solved with Parker Solar Probe on the case.  

Spilling The Sun’s Secrets

Parker Solar Probe launches summer 2018 on a seven-year mission to touch the Sun. Keep up with the latest on the Sun at @NASASun on Twitter, and follow along with Parker Solar Probe's last steps to launch at nasa.gov/solarprobe.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Celestial Geometry: Equinoxes and Eclipses

March 20 marks the spring equinox. It’s the first day of astronomical spring in the Northern Hemisphere, and one of two days a year when day and night are just about equal lengths across the globe.

image

Because Earth is tilted on its axis, there are only two days a year when the sun shines down exactly over the equator, and the day/night line – called the terminator – runs straight from north to south.

In the Northern Hemisphere, the March equinox marks the beginning of spring – meaning that our half of Earth is slowly tilting towards the sun, giving us longer days and more sunlight, and moving us out of winter and into spring and summer.

image

An equinox is the product of celestial geometry, and there’s another big celestial event coming up later this year: a total solar eclipse.

image

A solar eclipse happens when the moon blocks our view of the sun. This can only happen at a new moon, the period about once each month when the moon’s orbit positions it between the sun and Earth — but solar eclipses don’t happen every month.  

The moon’s orbit around Earth is inclined, so, from Earth's view, on most months we see the moon passing above or below the sun. A solar eclipse happens only on those new moons where the alignment of all three bodies are in a perfectly straight line.

image

On Aug. 21, 2017, a total solar eclipse will be visible in the US along a narrow, 70-mile-wide path that runs from Oregon to South Carolina. Throughout the rest of North America – and even in parts of South America, Africa, Europe and Asia – the moon will partially obscure the sun.

image

Within the path of totality, the moon will completely cover the sun’s overwhelmingly bright face, revealing the relatively faint outer atmosphere, called the corona, for seconds or minutes, depending on location.

It’s essential to observe eye safety during an eclipse. Though it’s safe to look at the eclipse ONLY during the brief seconds of totality, you must use a proper solar filter or indirect viewing method when any part of the sun’s surface is exposed – whether during the partial phases of an eclipse, or just on a regular day.

image

Learn more about the August eclipse at eclipse2017.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

How the Sun Affects Asteroids in Our Neighborhood

It’s no secret the Sun affects us here on Earth in countless ways, from causing sunburns to helping our houseplants thrive. The Sun affects other objects in space, too, like asteroids! It can keep them in place. It can move them. And it can even shape them.

How The Sun Affects Asteroids In Our Neighborhood

Asteroids embody the story of our solar system’s beginning. Jupiter’s Trojan asteroids, which orbit the Sun on the same path as the gas giant, are no exception. The Trojans are thought to be left over from the objects that eventually formed our planets, and studying them might offer clues about how the solar system came to be.

Over the next 12 years, NASA’s Lucy mission will visit eight asteroids—including seven Trojans— to help answer big questions about planet formation and the origins of our solar system. It will take the spacecraft about 3.5 years to reach its first destination.

How does the Sun affect what Lucy might find?

Place in Space

How The Sun Affects Asteroids In Our Neighborhood

Credits: Astronomical Institute of CAS/Petr Scheirich

The Sun makes up 99.8% of the solar system’s mass and exerts a strong gravitational force as a result. In the case of the Trojan asteroids that Lucy will visit, their very location in space is dictated in part by the Sun’s gravity. They are clustered at two Lagrange points. These are locations where the gravitational forces of two massive objects—in this case the Sun and Jupiter—are balanced in such a way that smaller objects (like asteroids or satellites) stay put relative to the larger bodies. The Trojans lead and follow Jupiter in its orbit by 60° at Lagrange points L4 and L5.

Pushing Asteroids Around (with Light!)

How The Sun Affects Asteroids In Our Neighborhood

The Sun can move and spin asteroids with light! Like many objects in space, asteroids rotate. At any given moment, the Sun-facing side of an asteroid absorbs sunlight while the dark side sheds energy as heat. When the heat escapes, it creates an infinitesimal amount of thrust, pushing the asteroid ever so slightly and altering its rotational rate. The Trojans are farther from the Sun than other asteroids we’ve studied before, and it remains to be seen how sunlight affects their movement.

Cracking the Surface (Also with Light!)

How The Sun Affects Asteroids In Our Neighborhood

The Sun can break asteroids, too. Rocks expand as they warm and contract when they cool. This repeated fluctuation can cause them to crack. The phenomenon is more intense for objects without atmospheres, such as asteroids, where temperatures vary wildly. Therefore, even though the Trojans are farther from the Sun than rocks on Earth, they’ll likely show more signs of thermal fracturing.

Solar Wind-Swept

How The Sun Affects Asteroids In Our Neighborhood

Like everything in our solar system, asteroids are battered by the solar wind, a steady stream of particles, magnetic fields, and radiation that flows from the Sun. For the most part, Earth’s magnetic field protects us from this bombardment. Without magnetic fields or atmospheres of their own, asteroids receive the brunt of the solar wind. When incoming particles strike an asteroid, they can kick some material off into space, changing the fundamental chemistry of what’s left behind.

Follow along with Lucy’s journey with NASA Solar System on Instagram, Facebook, and Twitter, and be sure to tune in for the launch at 5 a.m. EDT (09:00 UTC) on Saturday, Oct. 16 at nasa.gov/live.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
A lithograph of Girl Scout astronauts. Portraits of 33 women of various races and ethnicities curve around part of Earth (bottom left). On Earth are embossed words “doctors, educators, engineers, pilots, scientists.” At top left is the Moon, and at top right is the International Space Station. From left to right, bottom to top, the astronauts are Serena M. Auñón-Chancellor, Kayla Barron, Yvonne D. Cagle, Laurel B. Clark, Eileen M. Collins, Nancy J. Currie-Gregg, N. Jan Davis, Anna L. Fisher, Susan J. Helms, Joan E. Higginbotham, Kathryn P. Hire, Tamara E. Jernigan, Susan L. Kilrain, Christina H. Koch, Wendy B. Lawrence, Sandra H. Magnus, Nicole Aunapu Mann, Megan McArthur, Jessica U. Meir, Pamela A. Melroy, Dorothy M. Metcalf-Lindenburger, Barbara R. Morgan, Lisa M. Nowak, Loral O’Hara, Kathleen Rubins, M. Rhea Seddon, Heidemarie M. Stefanyshyn-Piper, Kathryn D. Sullivan, Kathryn C. Thornton, Janice E. Voss, Jessica Watkins, Mary Ellen Weber, and Sunita L. Williams.

It’s Girl Scout Day! March 12, 2024, is the 112th birthday of Girl Scouts in the United States, and to celebrate, we’re sharing a lithograph of the Girl Scout alumnae who became NASA astronauts.

Girl Scouts learn to work together, build community, embrace adventurousness and curiosity, and develop leadership skills—all of which come in handy as an astronaut. For example, former Scouts Christina Koch and Jessica Meir worked together to make history on Oct. 18, 2019, when they performed the first all-woman spacewalk.

Pam Melroy is one of only two women to command a space shuttle and became NASA’s deputy administrator on June 21, 2021.

Nicole Mann was the first Indigenous woman from NASA to go to space when she launched to the International Space Station on Oct. 5, 2022. Currently, Loral O’Hara is aboard the space station, conducting science experiments and research.

Participating in thoughtful activities in leadership and STEM in Girl Scouts has empowered and inspired generations of girls to explore space, and we can’t wait to meet the future generations who will venture to the Moon and beyond.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago

Photos of the eclipse are okay and just as neat to look at? Will NASA post to twitter. Will the Space station take photos also?

Yes, we will be posting a ton of photos and you can add to them as well! https://www.flickr.com/groups/nasa-eclipse2017/ I agree, the photos are incredibly cool! 


Tags
7 years ago

The California Wildfires from Above

As massive wildfires continue to rage in southern California, our satellites, people in space and aircraft are keeping an eye on the blazes from above. 

This data and imagery not only gives us a better view of the activity, but also helps first responders plan their course of action. 

image

A prolonged spell of dry weather primed the area for major fires. The largest of the blazes – the fast-moving Thomas fire in Ventura County – charred more than 65,000 acres.

image

Powerful Santa Ana winds fanned the flames and forecasters with the LA office of the National Weather Service warned that the region is in the midst of its strongest and longest Santa Ana wind event of the year. 

These winds are hot, dry and ferocious. They can whip a small brush fire into a raging inferno in just hours.

image

Our Aqua satellite captured the above natural-color image on Dec. 5. Actively burning areas are outlined in red. Each hot spot is an area where the thermal detectors on the satellite recognized temperatures higher than the background.

image

On the same day, the European Space Agency’s Sentinel-2 satellite captured the data for the above false-color image of the burn scar. This image uses observations of visible, shortwave infrared and near infrared light.

image

From the vantage point of space, our satellites and astronauts are able to see a more comprehensive view of the activity happening on the ground. 

image

The crew living and working 250 miles above Earth on the International Space Station passed over the fires on Dec. 6. The above view was taken by astronaut Randy Bresnik as the station passed over southern California.

image

During an engineering flight test of our Cloud-Aerosol Multi-Angle Lidar (CAMAL) instrument, a view from our ER-2 high-altitude research aircraft shows smoke plumes. From this vantage point at roughly 65,000 feet, the Thomas Fire was seen as it burned on Dec. 5.

image

Our satellites can even gather data and imagery of these wildfires at night. The above image on the right shows a nighttime view of the fires on Dec. 5. 

For comparison, the image on the left shows what this region looked like the day before. Both images were taken by the Suomi NPP satellite, which saw the fires by using a special “day-night band” to detect light in a range of wavelengths from green to near-infrared and uses light intensification to detect dim signals.

image

Having the capability to see natural disasters, like these wildfires in southern California, provides first responders with valuable information that helps guide their action in the field.

For more wildfire updates, visit: nasa.gov/fires.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   


Tags
Loading...
End of content
No more pages to load
  • watch
    watch reblogged this · 1 year ago
  • john-erby
    john-erby liked this · 3 years ago
  • 2reputationpegacorns
    2reputationpegacorns liked this · 3 years ago
  • bethelnie-blog
    bethelnie-blog liked this · 5 years ago
  • shailendra65631
    shailendra65631 reblogged this · 5 years ago
  • shailendra65631
    shailendra65631 liked this · 5 years ago
  • cherryobvious
    cherryobvious liked this · 5 years ago
  • texboge
    texboge liked this · 5 years ago
  • someoneintheinternet
    someoneintheinternet liked this · 5 years ago
  • insertanonymousname
    insertanonymousname liked this · 5 years ago
  • 16fahri
    16fahri liked this · 5 years ago
  • sirparvis97
    sirparvis97 liked this · 5 years ago
  • adt-space
    adt-space reblogged this · 5 years ago
  • luciferspoison
    luciferspoison liked this · 5 years ago
  • tracksuitmafia-bro
    tracksuitmafia-bro liked this · 5 years ago
  • dragons-barb
    dragons-barb liked this · 5 years ago
  • coldbloodedentity
    coldbloodedentity liked this · 5 years ago
  • readinginzerogravity
    readinginzerogravity liked this · 5 years ago
  • lovearcangel
    lovearcangel liked this · 5 years ago
  • delicatemusictale
    delicatemusictale liked this · 5 years ago
  • realspaceships
    realspaceships liked this · 5 years ago
  • kennedyhow
    kennedyhow liked this · 5 years ago
  • dawn-wasabi
    dawn-wasabi liked this · 5 years ago
  • cripple-cat
    cripple-cat liked this · 5 years ago
  • keira-roses-world
    keira-roses-world liked this · 5 years ago
  • stickyflapsuitcaseturkey
    stickyflapsuitcaseturkey liked this · 5 years ago
  • mrgneiss
    mrgneiss liked this · 5 years ago
  • sinking-in-stars
    sinking-in-stars liked this · 5 years ago
  • littlemissrand
    littlemissrand liked this · 5 years ago
  • maserati575
    maserati575 liked this · 5 years ago
  • omgbouquetwhispers
    omgbouquetwhispers liked this · 5 years ago
  • komorebbii
    komorebbii liked this · 5 years ago
  • sometimesandmaybe
    sometimesandmaybe liked this · 5 years ago
  • cannibalistic-writer
    cannibalistic-writer liked this · 5 years ago
  • zenyahtta
    zenyahtta liked this · 5 years ago
  • grapecola
    grapecola liked this · 5 years ago
  • fernandovenegas
    fernandovenegas liked this · 5 years ago
  • aki-kalchek-blog
    aki-kalchek-blog liked this · 5 years ago
  • youngkwho
    youngkwho liked this · 5 years ago
  • adoredvintage
    adoredvintage liked this · 5 years ago
  • smol-bean-dragon-hoard
    smol-bean-dragon-hoard liked this · 5 years ago
  • plaidetchocolatchaud
    plaidetchocolatchaud liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags