Our solar system is huge, let us break it down for you. Here are a few things you should know this week:
1. Closeup of a King
For the first time since it entered orbit around Jupiter in July, our Juno spacecraft has flown close to the king of planets—this time with its eyes wide open. During the long, initial orbit, Juno mission managers spent time checking out the spacecraft "from stem to stern," but the science instruments were turned off as a precaution. During this latest pass, Juno's camera and other instruments were collecting data the whole time. Initial reports show that all went well, and the team has released a new close-up view that Juno captured of Jupiter's north polar region. We can expect to see more close-up pictures of Jupiter and other data this week.
+Check in with Juno
2. Getting Ready to Rocket
Our OSIRIS-REx mission leaves Earth next week, the first leg of a journey that will take it out to an asteroid called Bennu. The mission will map the asteroid, study its properties in detail, then collect a physical sample to send back home to Earth. The ambitious endeavor is slated to start off on Sept. 8.
+See what it takes to prep for a deep space launch
3. New Moon Rising
The Lunar Reconnaissance Orbiter (LRO) has already mapped the entire surface of Earth's moon in brilliant detail, but the mission isn't over yet. Lunar explorers still have questions, and LRO is poised to help answer them.
+See what’s next for the mission
4. A Mock-Eclipse Now
We don't have to wait until next year to see the moon cross in front of the sun. From its vantage point in deep space, our Solar Dynamics Observatory (SDO) sometimes sees just that. Such an event is expected on Sept. 1.
+See the latest sun pictures from SDO
5. Jupiter’s Cousins
Our galaxy is home to a bewildering variety of Jupiter-like worlds: hot ones, cold ones, giant versions of our own giant, pint-sized pretenders only half as big around. Astronomers say that in our galaxy alone, a billion or more such Jupiter-like worlds could be orbiting stars other than our sun. And we can use them to gain a better understanding of our solar system and our galactic environment, including the prospects for finding life.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
You are seeing the culmination of almost twenty years of rain and snow, all at once.
For the first time, we have combined and remastered the satellite measurements from two of our precipitation spacecraft to create our most detailed picture of our planet’s rain and snowfall. This new record will help scientists better understand normal and extreme rain and snowfall around the world and how these weather events may change in a warming climate.
Using this new two-decade record, we can see the most extreme places on Earth.
The wettest places on our planet occur over oceans. These extremely wet locations tend to be very concentrated and over small regions.
A region off the coast of Indonesia receives on average 279 inches of rain per year.
An area off the coast of Colombia sees on average 360 inches of rain per year.
The driest places on Earth are more widespread. Two of the driest places on Earth are also next to cold ocean waters. In these parts of the ocean, it rains as little as it does in the desert -- they’re also known as ocean deserts!
Just two thousand miles to the south of Colombia is one of the driest areas, the Atacama Desert in Chile that receives on average 0.64 inches of rain per year.
Across the Atlantic Ocean, Namibia experiences on average 0.49 inches of rain a year and Egypt gets on average 0.04 inches of rain per year.
As we move from January to December, we can see the seasons shift across the world.
During the summer in the Northern Hemisphere, massive monsoons move over India and Southeast Asia.
We can also see dynamic swirling patterns in the Southern Ocean, which scientists consider one of our planet’s last great unknowns.
This new record also reveals typical patterns of rain and snow at different times of the day -- a pattern known as the diurnal cycle.
As the Sun heats up Earth’s surface during the day, rainfall occurs over land. In Florida, sea breezes from the Gulf of Mexico and Atlantic Ocean feed the storms causing them to peak in the afternoon. At night, storms move over the ocean.
In the winter months in the U.S. west coast, the coastal regions generally receive similar amounts of rain and snow throughout the day. Here, precipitation is driven less from the daily heating of the Sun and more from the Pacific Ocean bringing in atmospheric rivers -- corridors of intense water vapor in the atmosphere.
This new record marks a major milestone in the effort to generate a long-term record of rain and snow. Not only does this long record improve our understanding of rain and snow as our planet changes, but it is a vital tool for other agencies and researchers to understand and predict floods, landslides, disease outbreaks and agricultural production.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Vice President Mike Pence visited our Kennedy Space Center in Florida today. While there, he delivered remarks to the workforce and toured our complex to see progress toward sending humans deeper into space, and eventually to Mars. He also had the opportunity to see our work with commercial companies to launch humans from U.S. soil to the International Space Station.
Final preparations are underway for today's 5:55 p.m. EDT launch of the eleventh SpaceX cargo resupply mission to the International Space Station from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The SpaceX Dragon spacecraft will liftoff into orbit atop the Falcon 9 rocket carrying about 6,000 pounds of crew supplies, equipment and scientific research to crewmembers living aboard the station. The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more. Watch live coverage starting today at 5:15pm ET at http://www.nasa.gov/live
Learn more about the mission and launch at http://www.nasa.gov/spacex
Image credit: NASA/Bill Ingalls
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On July 20, 1969, the world watched as Apollo 11 astronauts Neil Armstrong and Buzz Aldrin took their first steps on the Moon. It was a historic moment for the United States and for humanity. Until then, no human had ever walked on another world. To achieve this remarkable feat, we recruited the best and brightest scientists, engineers and mathematicians across the country. At the peak of our Apollo program, an estimated 400,000 Americans of diverse race and ethnicity worked to realize President John F. Kennedy’s vision of landing humans on the Moon and bringing them safely back to Earth. The men and women of our Ames Research Center in California’s Silicon Valley supported the Apollo program in numerous ways – from devising the shape of the Apollo space capsule to performing tests on its thermal protection system and study of the Moon rocks and soils collected by the astronauts. In celebration of the upcoming 50th anniversary of the Apollo 11 Moon landing, here are portraits of some of the people who worked at Ames in the 1960s to help make the Apollo program a success.
Hank Cole did research on the design of the Saturn V rocket, which propelled humans to the Moon. An engineer, his work at Ames often took him to Edwards Air Force Base in Southern California, where he met Neil Armstrong and other pilots who tested experimental aircraft.
Caye Johnson came to Ames in 1964. A biologist, she analyzed samples taken by Apollo astronauts from the Moon for signs of life. Although no life was found in these samples, the methodology paved the way for later work in astrobiology and the search for life on Mars.
Richard Kurkowski started work at Ames in 1955, when the center was still part of the National Advisory Committee on Aeronautics, NASA’s predecessor. An engineer, he performed wind tunnel tests on aircraft prior to his work on the Apollo program.
Mike Green started at Ames in 1965 as a computer programmer. He supported aerospace engineers working on the development of the thermal protection system for the Apollo command module. The programs were executed on some of earliest large-scale computers available at that time.
Gerhard Hahne played an important role in certifying that the Apollo spacecraft heat shield used to bring our astronauts home from the Moon would not fail. The Apollo command module was the first crewed spacecraft designed to enter the atmosphere of Earth at lunar-return velocity – approximately 24,000 mph, or more than 30 times faster than the speed of sound.
Jim Arnold arrived at Ames in 1962 and was hired to work on studying the aerothermodynamics of the Apollo spacecraft. He was amazed by the image captured by Apollo 8 astronaut Bill Anders from lunar orbit on Christmas Eve in 1968 of Earth rising from beneath the Moon’s horizon. The stunning picture would later become known as the iconic Earthrise photo.
Howard Goldstein came to Ames in 1967. An engineer, he tested materials used for the Apollo capsule heat shield, which protected the three-man crew against the blistering heat of reentry into Earth’s atmosphere on the return trip from the Moon.
Richard Johnson developed a simple instrument to analyze the total organic carbon content of the soil samples collected by Apollo astronauts from the Moon’s surface. He and his wife Caye Johnson, who is also a scientist, were at our Lunar Receiving Laboratory in Houston when the Apollo 11 astronauts returned to Earth so they could examine the samples immediately upon their arrival.
William Borucki joined Ames in 1962. He collected data on the radiation environment of the Apollo heat shield in a facility used to simulate the reentry of the Apollo spacecraft into Earth’s atmosphere.
Join us in celebrating the 50th anniversary of the Apollo 11 Moon landing and hear about our future plans to go forward to the Moon and on to Mars by tuning in to a special two-hour live NASA Television broadcast at 1 pm ET on July 19. Watch the program at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
When you're finally up out of the air, high enough to see the Earth, what is it like to see our home planet from above for the first time?
First piece of Orion’s Artemis III pressure vessel arrives at NASA’s Michoud Assembly Facility in New Orleans. https://blogs.nasa.gov/artemis/2020/08/25/first-piece-of-artemis-iii-orion-delivered-to-nasa/
can you describe how earth looks like from space?
What design steps do you take to make sure that the robot runs smoothly, without anything like sand getting in the gears and wires?
Teams at our Michoud Assembly Facility in New Orleans worked overnight and are continuing Wednesday with assessment and recovery efforts following a tornado strike at the facility Tuesday at 11:25 a.m. CST. All 3,500 employees at the facility have been accounted for, with five sustaining minor injuries.
Teams worked through the night on temporary repairs to secure the perimeter fencing and provide access for the essential personnel through the main gate. Approximately 40 to 50 percent of the buildings at Michoud have some kind of damage; about five buildings have some form of severe damage.
Approximately 200 parked cars were damaged, and there was damage to roads and other areas near Michoud.
“The entire NASA family pulls together during good times and bad, and the teams at the Michoud Assembly Facility are working diligently to recover from the severe weather that swept through New Orleans Tuesday and damaged the facility,” said acting NASA Administrator Robert Lightfoot. “We are thankful for the safety of all the NASA employees and workers of onsite tenant organizations, and we are inspired by the resilience of Michoud as we continue to assess the facility’s status.”
Teams will reassess the condition of the Vertical Assembly Center (VAC), as the initial examination revealed some electrical damage to its substation. The VAC is used to weld all major pieces of hardware for the core stage of the Space Launch System. The most recently welded part was removed from the facility last week.
The team has prioritized completing the assessment at the site’s main manufacturing building for the Space Launch System and Orion spacecraft flight hardware so power can be restored in phases and temporary protection put in place to shield hardware from any further inclement weather.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What would happen if the crew of the Starship Enterprise handed over the controls to our scientists and engineers? It turns out many are avid Star Trek fans with lengthy itineraries in mind.
1. Vulcan
What is perhaps the most famous Star Trek planet was placed by creator Gene Roddenberry in a real star system: 40 Eridani. This trinary system of three dwarf stars, about 16 light-years from Earth, could play host to exoplanets; none have been detected there so far. The most massive is 40 Eridani A, chosen as Vulcan’s sun.
2. Andoria
An icy “M-class” (Star Trek's term for “Earth-like”) moon of a much larger planet—a gas giant—that is home to soft-spoken humanoids with blue skin, white hair and stylish antennae. In our solar system, gas giants play host to icy moons, such as Jupiter’s Europa or Saturn’s Enceladus, that possess subsurface oceans locked inside shells of ice. Our missions are searching for lifeforms that might exist in these cold, dark habitats.
3. Risa
Another Trek M-class planet known for its engineered tropical climate and its welcoming humanoid population. The planet is said to orbit a binary, or double, star system—in Star Trek fan lore, Epsilon Ceti, a real star system some 79 light-years from Earth. The first discovery of a planet around a binary was Kepler-16b, which is cold, gaseous and Saturn-sized.
4. “Shore Leave” planet, Omicron Delta region
This is another amusement park of a planet, where outlandish characters are manufactured in underground factories straight from the crew members’ imaginations. In real life, astronauts aboard the International Space Station print out plastic tools and containers with their own 3-D printer.
5. Nibiru
“Star Trek: Into Darkness” finds Captain Kirk and Dr. McCoy fleeing from chalk-skinned aliens through a red jungle. Red or even black vegetation could exist on real planets that orbit cooler, redder stars, an adaptation meant to gather as much light for photosynthesis as possible. An example may be Kepler-186f, a planet only 10 percent larger than Earth in diameter. At high noon, the surface of this planet would look something like dusk on Earth.
6. Wolf 359
A star best known in the Star Trek universe as the site of a fierce battle in which a multitude of “Star Trek: Next Generation” ships are defeated by the Borg. But Wolf 359 is a real star, one of the closest to Earth at a distance of 7.8 light-years. Wolf 359 is also a likely observational target for the Kepler space telescope in the upcoming Campaign 14 of its “K2” mission.
7. Eminiar VII/Vendikar
These two planets are neighbors, sharing a star system. So, of course, they’ve been at war for centuries. While we have no signs of interplanetary war, multiple rocky worlds have been discovered orbiting single stars. A cool dwarf star called TRAPPIST-1 is orbited by three Earth-size planets; two have a chance of being the right temperature for liquid water, with possible Earth-like atmospheres.
8. Remus
The planets Romulus and Remus are home to the Romulan Empire (ancient Rome, anyone?), although Remus seemed to have gotten the raw end of the deal. Remus is tidally locked, one face always turned to its star. Tidally locked worlds might well be a real thing, with many possible candidates discovered with our Kepler space telescope. The habitable portion of the surface of such planets might be confined to a band between the day and night sides called the “terminator zone”—a.k.a. the twilight zone.
9. Janus VI
A rocky world lacking an atmosphere, perhaps similar to Mars. While humans must maintain an artificial underground environment to survive, the innards of the planet are a comfortable home to an alien species known as the “Horta.” Their rock-like biochemistry is based on silicon, rather than carbon, inspiring us to imagine the many forms life might take in the universe.
10. Earth
In the Star Trek universe, Earth is home to Starfleet Headquarters; the real Earth is, at least so far, the only life-bearing world we know. No true Earth analogs have been discovered among the real exoplanets detected so far. But a new generation of space telescopes, designed to capture direct images of exoplanets in Earth’s size range, might one day reveal an alternative “pale blue dot.”
Learn more about exoplanets at: exoplanets.nasa.gov
Link to full article: https://exoplanets.nasa.gov/news/1378/top-10-star-trek-destinations-chosen-by-nasa-scientists/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts