Tornado Recovery Underway At Michoud Assembly Facility

Tornado Recovery Underway at Michoud Assembly Facility

Teams at our Michoud Assembly Facility in New Orleans worked overnight and are continuing Wednesday with assessment and recovery efforts following a tornado strike at the facility Tuesday at 11:25 a.m. CST. All 3,500 employees at the facility have been accounted for, with five sustaining minor injuries.

Teams worked through the night on temporary repairs to secure the perimeter fencing and provide access for the essential personnel through the main gate. Approximately 40 to 50 percent of the buildings at Michoud have some kind of damage; about five buildings have some form of severe damage.

image

Approximately 200 parked cars were damaged, and there was damage to roads and other areas near Michoud.

Tornado Recovery Underway At Michoud Assembly Facility

“The entire NASA family pulls together during good times and bad, and the teams at the Michoud Assembly Facility are working diligently to recover from the severe weather that swept through New Orleans Tuesday and damaged the facility,” said acting NASA Administrator Robert Lightfoot. “We are thankful for the safety of all the NASA employees and workers of onsite tenant organizations, and we are inspired by the resilience of Michoud as we continue to assess the facility’s status.”

image

Teams will reassess the condition of the Vertical Assembly Center (VAC), as the initial examination revealed some electrical damage to its substation. The VAC is used to weld all major pieces of hardware for the core stage of the Space Launch System. The most recently welded part was removed from the facility last week.

image

The team has prioritized completing the assessment at the site’s main manufacturing building for the Space Launch System and Orion spacecraft flight hardware so power can be restored in phases and temporary protection put in place to shield hardware from any further inclement weather.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago
Spectacular Death. Spectacular Star. Your Crushed Heart Remains Bright From Afar. You’re Looking At

Spectacular death. Spectacular star. Your crushed heart remains bright from afar. You’re looking at a composite image of the Crab Nebula, located 6,500 light-years away. The white dot in the center — an extremely dense ball of neutrons just 12 miles across but with the same mass as our Sun — is all that remains from a star that exploded in 1054 A.D. Had the blast occurred 50 light-years away, its intense radiation would have wiped out most life forms on Earth.  Spectacular death. Spectacular star. We’re grateful we can admire you from afar.


Tags
8 years ago

Celebrating 17 Years of NASA’s ‘Little Earth Satellite That Could’

The satellite was little— the size of a small refrigerator; it was only supposed to last one year and constructed and operated on a shoestring budget — yet it persisted.

After 17 years of operation, more than 1,500 research papers generated and 180,000 images captured, one of NASA’s pathfinder Earth satellites for testing new satellite technologies and concepts comes to an end on March 30, 2017. The Earth Observing-1 (EO-1) satellite will be powered off on that date but will not enter Earth’s atmosphere until 2056. 

“The Earth Observing-1 satellite is like The Little Engine That Could,” said Betsy Middleton, project scientist for the satellite at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

To celebrate the mission, we’re highlighting some of EO-1’s notable contributions to scientific research, spaceflight advancements and society. 

Scientists Learn More About Earth in Fine Detail

image

This animation shifts between an image showing flooding that occurred at the Arkansas and Mississippi rivers on January 12, 2016, captured by ALI and the rivers at normal levels on February 14, 2015 taken by the Operational Land Imager on Landsat 8. Credit: NASA’s Earth Observatory  

EO-1 carried the Advanced Land Imager that improved observations of forest cover, crops, coastal waters and small particles in the air known as aerosols. These improvements allowed researchers to identify smaller features on a local scale such as floods and landslides, which were especially useful for disaster support. 

image

On the night of Sept. 6, 2014, EO-1’s Hyperion observed the ongoing eruption at Holuhraun, Iceland as shown in the above image. Partially covered by clouds, this scene shows the extent of the lava flows that had been erupting.

EO-1’s other key instrument Hyperion provided an even greater level of detail in measuring the chemical constituents of Earth’s surface— akin to going from a black and white television of the 1940s to the high-definition color televisions of today. Hyperion’s level of sophistication doesn’t just show that plants are present, but can actually differentiate between corn, sorghum and many other species and ecosystems. Scientists and forest managers used these data, for instance, to explore remote terrain or to take stock of smoke and other chemical constituents during volcanic eruptions, and how they change through time.  

Crowdsourced Satellite Images of Disasters   

image

EO-1 was one of the first satellites to capture the scene after the World Trade Center attacks (pictured above) and the flooding in New Orleans after Hurricane Katrina. EO-1 also observed the toxic sludge in western Hungary in October 2010 and a large methane leak in southern California in October 2015. All of these scenes, which EO-1 provided quick, high-quality satellite imagery of the event, were covered in major news outlets. All of these scenes were also captured because of user requests. EO-1 had the capability of being user-driven, meaning the public could submit a request to the team for where they wanted the satellite to gather data along its fixed orbits. 

image

This image shows toxic sludge (red-orange streak) running west from an aluminum oxide plant in western Hungary after a wall broke allowing the sludge to spill from the factory on October 4, 2010. This image was taken by EO-1’s Advanced Land Imager on October 9, 2010. Credit: NASA’s Earth Observatory

 Artificial Intelligence Enables More Efficient Satellite Collaboration

image

This image of volcanic activity on Antarctica’s Mount Erebus on May 7, 2004 was taken by EO-1’s Advanced Land Imager after sensing thermal emissions from the volcano. The satellite gave itself new orders to take another image several hours later. Credit: Earth Observatory

EO-1 was among the first satellites to be programmed with a form of artificial intelligence software, allowing the satellite to make decisions based on the data it collects. For instance, if a scientist commanded EO-1 to take a picture of an erupting volcano, the software could decide to automatically take a follow-up image the next time it passed overhead. The Autonomous Sciencecraft Experiment software was developed by NASA’s Jet Propulsion Laboratory in Pasadena, California, and was uploaded to EO-1 three years after it launched. 

image

This image of Nassau Bahamas was taken by EO-1’s Advanced Land Imager on Oct 8, 2016, shortly after Hurricane Matthew hit. European, Japanese, Canadian, and Italian Space Agency members of the international coalition Committee on Earth Observation Satellites used their respective satellites to take images over the Caribbean islands and the U.S. Southeast coastline during Hurricane Matthew. Images were used to make flood maps in response to requests from disaster management agencies in Haiti, Dominican Republic, St. Martin, Bahamas, and the U.S. Federal Emergency Management Agency.

The artificial intelligence software also allows a group of satellites and ground sensors to communicate and coordinate with one another with no manual prompting. Called a "sensor web", if a satellite viewed an interesting scene, it could alert other satellites on the network to collect data during their passes over the same area. Together, they more quickly observe and downlink data from the scene than waiting for human orders. NASA's SensorWeb software reduces the wait time for data from weeks to days or hours, which is especially helpful for emergency responders. 

Laying the Foundation for ‘Formation Flying’

image

This animation shows the Rodeo-Chediski fire on July 7, 2002, that were taken one minute apart by Landsat 7 (burned areas in red) and EO-1 (burned areas in purple). This precision formation flying allowed EO-1 to directly compare the data and performance from its land imager and the Landsat 7 ETM+. EO-1’s most important technology goal was to test ALI for future Landsat satellites, which was accomplished on Landsat 8. Credit: NASA’s Goddard Space Flight Center

EO-1 was a pioneer in precision “formation flying” that kept it orbiting Earth exactly one minute behind the Landsat 7 satellite, already in orbit. Before EO-1, no satellite had flown that close to another satellite in the same orbit. EO-1 used formation flying to do a side-by-side comparison of its onboard ALI with Landsat 7’s operational imager to compare the products from the two imagers. Today, many satellites that measure different characteristics of Earth, including the five satellites in NASA's A Train, are positioned within seconds to minutes of one another to make observations on the surface near-simultaneously.

For more information on EO-1’s major accomplishments, visit: https://www.nasa.gov/feature/goddard/2017/celebrating-17-years-of-nasa-s-little-earth-satellite-that-could

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/.


Tags
5 years ago

What Space Weather Means for You

In space, invisible, fast-moving particles from the Sun and other sources in deep space zip around, their behavior shaped by dynamic electric and magnetic fields. There are so few of these particles that space is considered a vacuum, but what’s there packs a punch. Together, we call all of this invisible activity space weather — and it affects our technology both in space and here on Earth.

image

This month, two new missions are launching to explore two different kinds of space weather.

Scrambled signals

Many of our communications and navigation systems — like GPS and radio — rely on satellites to transmit their signals. When signals are sent from satellites down to Earth, they pass through a dynamic zone on the upper edge of Earth's atmosphere called the ionosphere.

image

Gases in the ionosphere have been cooked into a sea of positive- and negative-charged particles by solar radiation. These electrically charged particles are also mixed in with neutral gases, like the air we breathe. The charged particles respond to electric and magnetic fields, meaning they react to space weather. Regular weather can also affect this part of the atmosphere.

image

Influenced by this complicated web of factors, structured bubbles of charged gas sometimes form in this part of the atmosphere, particularly near the equator. When signals pass through these bubbles, they can get distorted, causing failed communications or inaccurate GPS fixes.

Right now, it's hard to predict just when these bubbles will form or how they'll mess with signals. The two tiny satellites of the E-TBEx mission will try to shed some light on this question.

image

As these CubeSats fly around Earth, they'll send radio signals to receiving stations on the ground. Scientists will examine the signals received in order to see whether — and if so, how much — they were jumbled as they traveled through the upper atmosphere and down to Earth.

All together, this information will give scientists a better idea of how these bubbles form and change and how much they disrupt signals — information that could help develop strategies for mitigating these bubbles' disruptive effects.

Damaged satellites

The high-energy, fast-moving particles that fill space are called radiation. Every single spacecraft — from scientific satellites sprinkled throughout the solar system to the communications satellites responsible for relaying the GPS signals we use every day — must weather the harsh radiation of space.

image

Strikes from tiny, charged particles can spark memory damage or computer upsets on spacecraft, and over time, degrade hardware. The effects are wide-ranging, but ultimately, radiation can impact important scientific data, or prevent people from getting the proper navigation signals they need.

Space Environment Testbeds — or SET, for short — is our mission to study how to better protect satellites from space radiation.

image

SET aims its sights on a particular neighborhood of near-Earth space called the slot region: the gap between two of Earth’s vast, doughnut-shaped radiation belts, also known as the Van Allen Belts. The slot region is thought to be calmer than the belts, but known to vary during extreme space weather storms driven by the Sun. How much it changes exactly, and how quickly, remains uncertain.

The slot region is an attractive one for satellites — especially commercial navigation and communications satellites that we use every day — because from about 12,000 miles up, it offers not only a relatively friendly radiation environment, but also a wide view of Earth. During intense magnetic storms, however, energetic particles from the outer belt can surge into the slot region. 

image

SET will survey the slot region, providing some of the first day-to-day weather measurements of this particular neighborhood in near-Earth space. The mission also studies the fine details of how radiation damages instruments and tests different methods to protect them, helping engineers build parts better suited for spaceflight. Ultimately, SET will help other missions improve their design, engineering and operations to avoid future problems, keeping our space technology running smoothly as possible.

For more on our space weather research, follow @NASASun on Twitter and NASA Sun Science on Facebook.

Meet the other NASA missions launching on the Department of Defense's STP-2 mission and get the latest updates at nasa.gov/spacex.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

Space Station Research: Nutrition

image

Each month, we highlight a different research topic on the International Space Station. In January, our focus is Nutrition. Understanding the role of nutrition in astronaut adaptation to spaceflight has a broader application on Earth. For example, understanding the relationship of nutrition to bone loss in space is potentially valuable for patients suffering from bone loss on Earth.

Space Station Research: Nutrition

The space station is being utilized to study the risks to human health that are inherent in space exploration. The human body changes in various ways in microgravity, and nutrition-related investigations help us understand and reduce those risks associated with those changes. Examples are:

Bone mineral density loss

Muscle atrophy

Cardiovascular deconditioning

Immune dysfunction

Radiation

and more

Scientists can also test the effectiveness of potential countermeasures like exercise and nutrition, which can have health benefits for those of us on Earth.

image

Did you know that in 2015 the space station crew harvested and ate lettuce that was grown on the space station? The Veggie facility on station is an experiment that supports a variety of plant species that can be cultivated for educational outreach, fresh food and even recreation for crew members on long-duration missions. Right now, the crew is growing Zinnia flowers. Understanding how flowering plans grow in microgravity can be applied to growing other edible flowering plants, such as tomatoes.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What is like to be surrounded by the stars and darkness? Is it terrifying or calming?


Tags
6 years ago

Gravity, Hazard of Alteration

A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards astronauts will encounter on a continual basis into five classifications.

image

The variance of gravity fields that astronauts will encounter on a mission to Mars is the fourth hazard.

image

On Mars, astronauts would need to live and work in three-eighths of Earth’s gravitational pull for up to two years. Additionally, on the six-month trek between the planets, explorers will experience total weightlessness. 

image

Besides Mars and deep space there is a third gravity field that must be considered. When astronauts finally return home they will need to readapt many of the systems in their bodies to Earth’s gravity.

image

To further complicate the problem, when astronauts transition from one gravity field to another, it’s usually quite an intense experience. Blasting off from the surface of a planet or a hurdling descent through an atmosphere is many times the force of gravity.

image

Research is being conducted to ensure that astronauts stay healthy before, during and after their mission. Specifically researchers study astronauts’ vision, fine motor skills, fluid distribution, exercise protocols and response to pharmaceuticals.

image

Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including gravity. To learn more, and find out what NASA’s Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of gravity with Peter Norsk, Senior Research Director/ Element Scientist at the Johnson Space Center.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

Visual 'Autocorrect' for NASA Space Telescope

Telescopes located both on the ground and in space continue to dazzle us with incredible images of the universe. We owe these sharp vistas to a series of brilliant astronomers, including Andrea Ghez – an astrophysicist and professor at UCLA – and the “Mother of Hubble,” Nancy Grace Roman.

Did you know that stars don’t actually twinkle? They only look like they do because their light has to travel through our turbulent atmosphere to reach our eyes. As the atmosphere shifts and swirls around, the light from distant stars is slightly refracted, or bent, in different directions. Sometimes it’s directed right at us, but sometimes it’s directed a bit to the side.

Visual 'Autocorrect' For NASA Space Telescope

It's like someone’s shining a flashlight toward you but moving it around slightly. Sometimes the beam is pointed right at you and appears very bright, and sometimes it's pointed a bit to either side of you and it appears dimmer. The amount of light isn't really changing, but it looks like it is.

Visual 'Autocorrect' For NASA Space Telescope

This effect creates a problem for ground-based telescopes. Instead of seeing sharp images, astronomers get fuzzy pictures. Special tech known as adaptive optics helps resolve pictures of space so astronomers can see things more clearly. It’s even useful for telescopes that are in space, above Earth’s atmosphere, because tiny imperfections in their optics can blur images, too.

Visual 'Autocorrect' For NASA Space Telescope

In 2020, Andrea Ghez was awarded a share of the Nobel Prize in Physics for devising an experiment that proved there’s a supermassive black hole embedded in the heart of our galaxy – something Hubble has shown is true of almost every galaxy in the universe! She used the W. M. Keck Observatory’s adaptive optics to track stars orbiting the unseen black hole.

Visual 'Autocorrect' For NASA Space Telescope

A woman named Nancy Grace Roman, who was NASA’s first chief astronomer, paved the way for telescopes that study the universe from space. An upcoming observatory named in her honor, the Nancy Grace Roman Space Telescope, will use a special kind of adaptive optics in its Coronagraph Instrument, which is a technology demonstration designed to block the glare from host stars and reveal dimmer orbiting planets.

Roman’s Coronagraph Instrument will come equipped with deformable mirrors that will serve as a form of visual "autocorrect" by measuring and subtracting starlight in real time. The mirrors will bend and flex to help counteract effects like temperature changes, which can slightly alter the shape of the optics.

Visual 'Autocorrect' For NASA Space Telescope

Other telescopes have taken pictures of enormous, young, bright planets orbiting far away from their host stars because they’re usually the easiest ones to see. Taking tech that’s worked well on ground-based telescopes to space will help Roman photograph dimmer, older, colder planets than any other observatory has been able to so far. The mission could even snap the first real photograph of a planet like Jupiter orbiting a Sun-like star!

Find out more about the Nancy Grace Roman Space Telescope on Twitter and Facebook, and learn about the person from which the mission draws its name.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

Celebrating Women’s History Month: Most Recent Female Astronauts

For Women’s History Month, NASA and the International Space Station celebrate the women who conduct science aboard the orbiting lab. As of March 2019, 63 women have flown in space, including cosmonauts, astronauts, payload specialists, and space station participants. The first woman in space was Russian cosmonaut Valentina Tereshkova who flew on Vostok 6 on June 16, 1963. The first American woman in space, Sally Ride, flew aboard the Space Shuttle STS-7 in June of 1983.

If conducted as planned, the upcoming March 29 spacewalk with Anne McClain and Christina Koch would be the first all-female spacewalk. Women have participated in science on the space station since 2001; here are the most recent and some highlights from their scientific work:

Christina Koch, Expedition 59

image

Christina Koch (pictured on the right) becomes the most recent woman in space, launching to the space station in mid-March to take part in some 250 research investigations and technology demonstrations. Koch served as station chief of the American Samoa Observatory and has contributed to the development of instruments used to study radiation particles for the Juno mission and the Van Allen Probe.

Anne McClain, Expedition 57/58, 59

image

Flight Engineer Anne McClain collects samples for Marrow, a long-term investigation into the negative effects of microgravity on the bone marrow and blood cells it produces. The investigation may lead to development of strategies to help prevent these effects in future space explorers, as well as people on Earth who experience prolonged bed rest. McClain holds the rank of Lieutenant Colonel as an Army Aviator, with more than 2,000 flight hours in 20 different aircraft.

Serena M. Auñón-Chancellor, Expedition 56/57

image

Serena Auñón-Chancellor conducts research operations for the AngieX Cancer Therapy inside the Microgravity Science Glovebox (MSG). This research may facilitate a cost-effective drug testing method and help develop safer and more effective vascular-targeted treatments. As a NASA Flight Surgeon, Auñón-Chancellor spent more than nine months in Russia supporting medical operations for International Space Station crew members. 

Peggy Whitson, Expeditions 5, 16, 50, 51/52

image

Astronaut Peggy Whitson holds numerous spaceflight records, including the U.S. record for cumulative time in space – 665 days – and the longest time for a woman in space during a single mission, 289 days. She has tied the record for the most spacewalks for any U.S. astronaut and holds the record for the most spacewalk time for female space travelers. She also served as the first science officer aboard the space station and the first woman to be station commander on two different missions. During her time on Earth, she also is the only woman to serve as chief of the astronaut office. Here she works on the Genes in Space-3 experiment, which completed the first-ever sample-to-sequence process entirely aboard the International Space Station. This innovation makes it possible to identify microbes in real time without having to send samples back to Earth, a revolutionary step for microbiology and space exploration.  

Kate Rubins, Expedition 48/49

image

The Heart Cells investigation studies the human heart, specifically how heart muscle tissue contracts, grows and changes its gene expression in microgravity and how those changes vary between subjects. In this image, NASA astronaut Kate Rubins conducts experiment operations in the U.S. National Laboratory. Rubins also successfully sequenced DNA in microgravity for the first time as part of the Biomolecule Sequencer experiment.

Samantha Cristoforetti, Expedition 42/43

image

The first Italian woman in space, European Space Agency (ESA) astronaut Samantha Cristoforetti conducts the SPHERES-Vertigo investigation in the Japanese Experiment Module (JEM). The investigation uses free-flying satellites to demonstrate and test technologies for visual inspection and navigation in a complex environment.

Elena Serova, Expedition 41/42

image

Cosmonaut Elena Serova, the first Russian woman to visit the space station, works with the bioscience experiment ASEPTIC in the Russian Glavboks (Glovebox). The investigation assessed the reliability and efficiency of methods and equipment for assuring aseptic or sterile conditions for biological investigations performed on the space station. 

Karen Nyberg, Expedition 36/37

image

NASA astronaut Karen Nyberg sets up the Multi-Purpose Small Payload Rack (MSPR) fluorescence microscope in the space station’s Kibo laboratory. The MSPR has two workspaces and a table used for a wide variety of microgravity science investigations and educational activities.

Sunita Williams, Expeditions 32/33, 14/15

image

This spacewalk by NASA astronaut Sunita Williams and Japan Aerospace Exploration Agency (JAXA) astronaut Aki Hoshide, reflected in Williams’ helmet visor, lasted six hours and 28 minutes. They completed installation of a main bus switching unit (MBSU) and installed a camera on the International Space Station’s robotic Canadarm2. Williams participated in seven spacewalks and was the second woman ever to be commander of the space station. She also is the only person ever to have run a marathon while in space. She flew in both the space shuttle and Soyuz, and her next assignment is to fly a new spacecraft: the Boeing CST-100 Starliner during its first operational mission for NASA’s Commercial Crew Program. 

Cady Coleman, Expeditions 26/27

image

Working on the Capillary Flow Experiment (CFE), NASA astronaut Catherine (Cady) Coleman performs a Corner Flow 2 (ICF-2) test. CFE observes the flow of fluid in microgravity, in particular capillary or wicking behavior. As a participant in physiological and equipment studies for the Armstrong Aeromedical Laboratory, she set several endurance and tolerance records. Coleman logged more than 4,330 total hours in space aboard the Space Shuttle Columbia and the space station.

Tracy Caldwell Dyson, Expedition 24

image

A system to purify water for use in intravenous administration of saline would make it possible to better treat ill or injured crew members on future long-duration space missions. The IVGEN investigation demonstrates hardware to provide that capability. Tracy Caldwell Dyson sets up the experiment hardware in the station’s Microgravity Science Glovebox (MSG). As noted above, she and Shannon Walker were part of the first space station crew with more than one woman. 

Shannon Walker, Expedition 24/25

image

Astronaut Shannon Walker flew on Expedition 24/25, a long-duration mission that lasted 163 days. Here she works at the Cell Biology Experiment Facility (CBEF), an incubator with an artificial gravity generator used in various life science experiments, such as cultivating cells and plants on the space station.  She began working in the space station program in the area of robotics integration, worked on avionics integration and on-orbit integrated problem-solving for the space station in Russia, and served as deputy and then acting manager of the On-Orbit Engineering Office at NASA prior to selection as an astronaut candidate.

Stephanie Wilson, STS-120, STS-121, STS-131

image

Astronaut Stephanie Wilson unpacks a Microgravity Experiment Research Locker Incubator II (MERLIN) in the Japanese Experiment Module (JEM). Part of the Cold Stowage Fleet of hardware, MERLIN provides a thermally controlled environment for scientific experiments and cold stowage for transporting samples to and from the space station. Currently serving as branch chief for crew mission support in the Astronaut Office, Wilson logged more than 42 days in space on three missions on the space shuttle, part of the Space Transportation System (STS). 

Other notable firsts:

• Roscosmos cosmonaut Svetlana Savitskaya, the first woman to participate in an extra-vehicular activity (EVA), or spacewalk, on July 25, 1984

• NASA astronaut Susan Helms, the first female crew member aboard the space station, a member of Expedition 2 from March to August 2001

• NASA astronaut Peggy Whitson, the first female ISS Commander, April 2008, during a six-month tour of duty on Expedition 16

• The most women in space at one time (four) happened in 2010, when space shuttle Discovery visited the space station for the STS-131 mission. Discovery’s crew of seven included NASA astronauts Dorothy Metcalf-Lindenburger and Stephanie Wilson and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki. The space station crew of six included NASA astronaut Tracy Caldwell Dyson.

• Susan Helms shares the record for longest single spacewalk, totaling 8 hours 56 minutes with fellow NASA astronaut Jim Voss. 

• Expedition 24 marked the first with two women, NASA astronauts Shannon Walker and Tracy Caldwell Dyson, assigned to a space station mission from April to September, 2010

• The 2013 astronaut class is the first with equal numbers of women and men. 

• NASA astronaut Anne McClain became the first woman to live aboard the space station as part of two different crews with other women: Serena Auñón-Chancellor in December 2018 and currently in orbit with Christina Koch.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 months ago
A view into a large clean room, a warehouse-like facility, reveals a set of six large, black rectangular structures that look like circuit boards with red lines and small glass tiles on them. Each panel is flat, installed in a black picture frame structure that allows them to be rotated. In the background, the same type of structures are upright and connected, standing around three times taller than a person. They’re assembled into their stowed, flight-like configuration. Instead of being covered in red circuitry, the upright panels have a series of gray squares all over them that simulate the mass of the solar cells and harnessing. To the upright structure’s right, several workers in head-to-toe white suits and blue gloves stand in a group. Credit: NASA/Chris Gunn

This photo contains both flight (flat in the foreground) and qualification assembly (upright in the background) versions of the Solar Array Sun Shield for NASA’s Nancy Grace Roman Space Telescope. These panels will both shade the mission’s instruments and power the observatory.

Double Vision: Why Do Spacecraft Have Twin Parts?

Seeing double? You’re looking at our Nancy Grace Roman Space Telescope’s Solar Array Sun Shield laying flat in pieces in the foreground, and its test version connected and standing upright in the back. The Sun shield will do exactly what it sounds like –– shade the observatory –– and also collect sunlight for energy to power Roman.

These solar panels are twins, just like several of Roman’s other major components. Only one set will actually fly in space as part of the Roman spacecraft…so why do we need two?

Sometimes engineers do major tests to simulate launch and space conditions on a spare. That way, they don’t risk damaging the one that will go on the observatory. It also saves time because the team can do all the testing on the spare while building up the flight version. In the Sun shield’s case, that means fitting the flight version with solar cells and eventually getting the panels integrated onto the spacecraft.

A series of two images. The top one shows a large metallic structure suspended from the ceiling in a spacious room. The structure is hollow with six sides, each covered with a diamond-like pattern. Three people in head-to-toe white suits and blue gloves watch in the foreground. The left wall in the background is covered in small, pale pink squares. The right wall features a viewing window, through which several observers are looking. The bottom image is a wide-angle view of a similar structure in a different large room. It’s placed at the left end of a giant mechanical arm. Credit: NASA/Jolearra Tshiteya/Chris Gunn (top), NASA/Scott Wiessinger (bottom)

Our Nancy Grace Roman Space Telescope's primary structure (also called the spacecraft bus) moves into the big clean room at our Goddard Space Flight Center (top). While engineers integrate other components onto the spacecraft bus in the clean room, the engineering test unit (also called the structural verification unit) undergoes testing in the centrifuge at Goddard. The centrifuge spins space hardware to ensure it will hold up against the forces of launch.

Engineers at our Goddard Space Flight Center recently tested the Solar Array Sun Shield qualification assembly in a thermal vacuum chamber, which simulates the hot and cold temperatures and low-pressure environment that the panels will experience in space. And since the panels will be stowed for launch, the team practiced deploying them in space-like conditions. They passed all the tests with flying colors!

The qualification panels will soon pass the testing baton to the flight version. After the flight Solar Array Sun Shield is installed on the Roman spacecraft, the whole spacecraft will go through lots of testing to ensure it will hold up during launch and perform as expected in space.

For more information about the Roman Space Telescope, visit: www.nasa.gov/roman. You can also virtually tour an interactive version of the telescope here.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Will the James Webb Telescope also be able to spot out signs of life on habitable worlds?


Tags
Loading...
End of content
No more pages to load
  • b1gboy504
    b1gboy504 liked this · 5 years ago
  • theastroshow
    theastroshow liked this · 5 years ago
  • paulitabean
    paulitabean liked this · 6 years ago
  • kezziedollaz-blog
    kezziedollaz-blog liked this · 6 years ago
  • this-doesnt-endd
    this-doesnt-endd liked this · 7 years ago
  • ghost-mantis
    ghost-mantis liked this · 7 years ago
  • papito6666-blog
    papito6666-blog liked this · 8 years ago
  • revatron
    revatron liked this · 8 years ago
  • queen-helaena
    queen-helaena liked this · 8 years ago
  • twistergal1-blog
    twistergal1-blog reblogged this · 8 years ago
  • twistergal1-blog
    twistergal1-blog liked this · 8 years ago
  • yraelviii
    yraelviii reblogged this · 8 years ago
  • robotechmaster
    robotechmaster liked this · 8 years ago
  • thepurposewithin
    thepurposewithin reblogged this · 8 years ago
  • lovingvegale-blog
    lovingvegale-blog liked this · 8 years ago
  • fleurdebach5-blog
    fleurdebach5-blog liked this · 8 years ago
  • gravityinglass
    gravityinglass reblogged this · 8 years ago
  • mooneyezstargazer
    mooneyezstargazer liked this · 8 years ago
  • white-aster
    white-aster reblogged this · 8 years ago
  • fuvvvkk
    fuvvvkk liked this · 8 years ago
  • vampirebatreblog
    vampirebatreblog liked this · 8 years ago
  • skcirthinq
    skcirthinq reblogged this · 8 years ago
  • samurljackson
    samurljackson reblogged this · 8 years ago
  • thebizza
    thebizza reblogged this · 8 years ago
  • mikalan
    mikalan liked this · 8 years ago
  • analgesicsleep
    analgesicsleep reblogged this · 8 years ago
  • computer--cats
    computer--cats liked this · 8 years ago
  • patriciakay25840-blog
    patriciakay25840-blog liked this · 8 years ago
  • rozzychan
    rozzychan liked this · 8 years ago
  • phipiohsum475
    phipiohsum475 reblogged this · 8 years ago
  • biohazard769
    biohazard769 reblogged this · 8 years ago
  • seventhpaw
    seventhpaw liked this · 8 years ago
  • the-scoutt
    the-scoutt reblogged this · 8 years ago
  • the-scoutt
    the-scoutt liked this · 8 years ago
  • amayafire
    amayafire reblogged this · 8 years ago
  • amayafire
    amayafire liked this · 8 years ago
  • finaldelta
    finaldelta reblogged this · 8 years ago
  • samurljackson
    samurljackson liked this · 8 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags