What's The Weirdest Part Of Your Job? How Does A Typical Work Day For You Looks Like?

What's the weirdest part of your job? How does a typical work day for you looks like?

More Posts from Nasa and Others

6 years ago

Two Steps Forward in the Search for Life on Mars

We haven’t found aliens but we are a little further along in our search for life on Mars thanks to two recent discoveries from our Curiosity Rover.

image

We detected organic molecules at the harsh surface of Mars! And what’s important about this is we now have a lot more certainty that there’s organic molecules preserved at the surface of Mars. We didn’t know that before.

One of the discoveries is we found organic molecules just beneath the surface of Mars in 3 billion-year-old sedimentary rocks.

image

Second, we’ve found seasonal variations in methane levels in the atmosphere over 3 Mars years (nearly 6 Earth years). These two discoveries increase the chances that the record of habitability and potential life has been preserved on the Red Planet despite extremely harsh conditions on the surface.

image

Both discoveries were made by our chem lab that rides aboard the Curiosity rover on Mars.

image

Here’s an image from when we installed the SAM lab on the rover. SAM stands for “Sample Analysis at Mars” and SAM did two things on Mars for this discovery.

One - it tested Martian rocks. After the arm selects a sample of pulverized rock, it heats up that sample and sends that gas into the chamber, where the electron stream breaks up the chemicals so they can be analyzed.

What SAM found are fragments of large organic molecules preserved in ancient rocks which we think come from the bottom of an ancient Martian lake. These organic molecules are made up of carbon and hydrogen, and can include other elements like nitrogen and oxygen. That’s a possible indicator of ancient life…although non-biological processes can make organic molecules, too.

The other action SAM did was ‘sniff’ the air.

image

When it did that, it detected methane in the air. And for the first time, we saw a repeatable pattern of methane in the Martian atmosphere. The methane peaked in the warm, summer months, and then dropped in the cooler, winter months.

image

On Earth, 90 percent of methane is produced by biology, so we have to consider the possibility that Martian methane could be produced by life under the surface. But it also could be produced by non-biological sources. Right now, we don’t know, so we need to keep studying the Mars!

image

One of our upcoming Martian missions is the InSight lander. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to give the Red Planet its first thorough checkup since it formed 4.5 billion years ago. It is the first outer space robotic explorer to study in-depth the "inner space" of Mars: its crust, mantle, and core.

Finding methane in the atmosphere and ancient carbon preserved on the surface gives scientists confidence that our Mars 2020 rover and ESA’s (European Space Agency's) ExoMars rover will find even more organics, both on the surface and in the shallow subsurface.

Read the full release on today’s announcement HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

Solar System: Things to Know This Week

We love Lucy—our spacecraft that will visit the ancient Trojan asteroids near Jupiter, that is. This week, let us count the ways this 2021 mission could revolutionize what we know about the origins of Earth and ourselves.

1. Lucky Lucy 

image

Earlier this year, we selected the Lucy mission to make the first-ever visit to a group of asteroids known as the Trojans. This swarm of asteroids orbits in two loose groups around the Sun, with one group always ahead of Jupiter in its path, and the other always behind. The bodies are stabilized by the Sun and Jupiter in a gravitational balancing act, gathering in locations known as Lagrange points.

2. Old. Really, Really Old

image

Jupiter's swarms of Trojan asteroids may be remnants of the material that formed our outer planets more than 4 billion years ago—so these fossils may help reveal our most distant origins. "They hold vital clues to deciphering the history of the solar system," said Dr. Harold F. Levison, Lucy principal investigator from Southwest Research Institute (SwRI) in Boulder, Colorado.

3. A Link to The Beatles

image

Lucy takes its name from the fossilized human ancestor, called "Lucy" by her discoverers, whose skeleton provided unique insight into humanity's evolution. On the night it was discovered in 1974, the team's celebration included dancing and singing to The Beatles' song "Lucy In The Sky With Diamonds." At some point during that evening, expedition member Pamela Alderman named the skeleton "Lucy," and the name stuck. Jump ahead to 2013 and the mission's principal investigator, Dr. Levison, was inspired by that link to our beginnings to name the spacecraft after Lucy the fossil. The connection to The Beatles' song was just icing on the cake.

4. Travel Itinerary

One of two missions selected in a highly competitive process, Lucy will launch in October 2021. With boosts from Earth's gravity, it will complete a 12-year journey to seven different asteroids: a Main Belt asteroid and six Trojans.

5. Making History

image

No other space mission in history has been launched to as many different destinations in independent orbits around the Sun. Lucy will show us, for the first time, the diversity of the primordial bodies that built the planets.

6. What Lies Beneath 

Lucy's complex path will take it to both clusters of Trojans and give us our first close-up view of all three major types of bodies in the swarms (so-called C-, P- and D-types). The dark-red P- and D-type Trojans resemble those found in the Kuiper Belt of icy bodies that extends beyond the orbit of Neptune. The C-types are found mostly in the outer parts of the Main Belt of asteroids, between the orbits of Mars and Jupiter. All of the Trojans are thought to be abundant in dark carbon compounds. Below an insulating blanket of dust, they are probably rich in water and other volatile substances.

7. Pretzel, Anyone?

image

This diagram illustrates Lucy's orbital path. The spacecraft's path (green) is shown in a slowly turning frame of reference that makes Jupiter appear stationary, giving the trajectory its pretzel-like shape.

8. Moving Targets

image

This time-lapsed animation shows the movements of the inner planets (Mercury, brown; Venus, white; Earth, blue; Mars, red), Jupiter (orange), and the two Trojan swarms (green) during the course of the Lucy mission.

9. Long To-Do List

Lucy and its impressive suite of remote-sensing instruments will study the geology, surface composition, and physical properties of the Trojans at close range. The payload includes three imaging and mapping instruments, including a color imaging and infrared mapping spectrometer and a thermal infrared spectrometer. Lucy also will perform radio science investigations using its telecommunications system to determine the masses and densities of the Trojan targets.

10. Dream Team

Several institutions will come together to successfully pull off this mission. The Southwest Research Institute in Boulder, Colorado, is the principal investigator institution. Our Goddard Space Flight Center will provide overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space Systems in Denver will build the spacecraft. Instruments will be provided by Goddard, the Johns Hopkins Applied Physics Laboratory and Arizona State University. Discovery missions are overseen by the Planetary Missions Program Office at our Marshall Space Flight Center in Huntsville, Alabama, for our Planetary Science Division.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Juno: Inside the Spacecraft

image

Our Juno spacecraft was carefully designed to meet the tough challenges in flying a mission to Jupiter: weak sunlight, extreme temperatures and deadly radiation. Lets take a closer look at Juno:

It Rotates!

image

Roughly the size of an NBA basketball court, Juno is a spinning spacecraft. Cartwheeling through space makes the spacecraft’s pointing extremely stable and easy to control. While in orbit at Jupiter, the spinning spacecraft sweeps the fields of view of its instruments through space once for each rotation. At three rotations per minute, the instruments’ fields of view sweep across Jupiter about 400 times in the two hours it takes to fly from pole to pole.

It Uses the Power of the Sun

image

Jupiter’s orbit is five times farther from the sun than Earth’s, so the giant planet receives 25 times less sunlight than Earth. Juno will be the first solar-powered spacecraft we've designed to operate at such a great distance from the sun. Because of this, the surface area of the solar panels required to generate adequate power is quite large.

image

Three solar panels extend outward from Juno’s hexagonal body, giving the overall spacecraft a span of about 66 feet. Juno benefits from advances in solar cell design with modern cells that are 50% more efficient and radiation tolerant than silicon cells available for space missions 20 years ago. Luckily, the mission’s power needs are modest, with science instruments requiring full power for only about six out of each 11-day orbit.

It Has a Protective Radiation Vault

image

Juno will avoid Jupiter’s highest radiation regions by approaching over the north, dropping to an altitude below the planet’s radiation belts, and then exiting over the south. To protect sensitive spacecraft electronics, Juno will carry the first radiation shielded electronics vault, a critical feature for enabling sustained exploration in such a heavy radiation environment.

Juno Science Payload:

Gravity Science and Magnetometers – Will study Jupiter’s deep structure by mapping the planet’s gravity field and magnetic field.

image

Microwave Radiometer – Will probe Jupiter’s deep atmosphere and measure how much water (and hence oxygen) is there.

image

JEDI, JADE and Waves – These instruments will work to sample electric fields, plasma waves and particles around Jupiter to determine how the magnetic field is connected to the atmosphere, and especially the auroras (northern and southern lights).

JADE and JEDI

image

Waves

image

UVS and JIRAM – Using ultraviolet and infrared cameras, these instruments will take images of the atmosphere and auroras, including chemical fingerprints of the gases present.

UVS

image

JIRAM

image

JunoCam – Take spectacular close-up, color images.

image

Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago
Labor Day Reflections: The Nancy Grace Roman Space Telescope’s Primary Mirror Reflects An American

Labor Day reflections: the Nancy Grace Roman Space Telescope’s primary mirror reflects an American flag hanging overhead.⁣ ⁣ The mirror, which will collect and focus light from cosmic objects near and far, has been completed. Renamed after our first chief astronomer and "Mother of Hubble," the Roman Space Telescope will capture stunning space vistas with a field of view 100 times greater than Hubble Space Telescope images. The spacecraft will study the universe using infrared light, which human eyes can’t detect without assistance. ⁣ ⁣ This Labor Day, we thank all the people who work to advance the future for humanity.⁣ ⁣ Credit: L3Harris Technologies⁣ Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com ⁣


Tags
9 years ago

Solar System: 5 Things To Know This Week

Our solar system is huge, so let us break it down for you. Here are 5 things you should know this week: 

1. From Pluto, with Love

Solar System: 5 Things To Know This Week

Last Valentine’s Day, no one had even seen Pluto’s most famous feature, the heart-shaped Sputnik Planum. These days, the New Horizons spacecraft is sending more and more pictures back to Earth from its Pluto flyby last July. We received new ones almost on a weekly basis. For the latest love from the outer solar system, go HERE.

2. Saturn’s Rings: More (and Less) than Meets the Eye

Solar System: 5 Things To Know This Week

The Cassini spacecraft is executing a series of maneuvers to raise its orbit above the plane of Saturn’s famous rings. This will offer some breathtaking views that you won’t want to miss. Meanwhile, Cassini scientists are learning surprising things, such as the fact that the most opaque sections of the rings are not necessarily the thickest.

3. Stay on Target

Solar System: 5 Things To Know This Week

The Juno spacecraft recently completed a course correction maneuver to fine-tune its approach to Jupiter. After years of flight and millions of miles crossed, arrival time is now set to the minute: July 4th at 11:18 p.m. EST. See why we’re going to jupiter HERE.

4. The Many Lives of “Planet X”

Solar System: 5 Things To Know This Week

The announcement of a potential new planet beyond Neptune creates an opportunity to look back at the ongoing search for new worlds in the unmapped reaches of our own solar system. Review what we’ve found so far, and what else might be out there HERE.

5. Answering the Call of Europa

Solar System: 5 Things To Know This Week

There are a few places more intriguing that Jupiter’s icy moon, Europa, home to an underground ocean with all the ingredients necessary for potential life. We’re undertaking a new mission to investigate, and the project’s top manager and scientist will be giving a live lecture to detail their plans. Join Barry Goldstein and Bob Pappalardo on Feb. 11 at 10 p.m. EST for a live lecture series on Ustream.

Want to learn more? Read our full list of the 10 things to know this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

Why do scientists think there could have been life on Mars?


Tags
9 years ago

15 Ways the International Space Station is Benefiting Earth

With astronauts living and working aboard the International Space Station, we’re learning a great deal about creating and testing critical systems, maintaining efficient communications and protecting the human body during a deep space mission. While these are critical to our journey to Mars, it is important to also note all the ways in which research conducted and technology tested aboard the orbiting laboratory help us here on Earth.

Here are 15 ways the space station is benefiting life on Earth:

1. Commercializing Low-Earth Orbit

15 Ways The International Space Station Is Benefiting Earth

An exciting new commercial pathway is revolutionizing and opening access to space, fostering America’s new space economy in low-Earth orbit. For the first time, the market is expressing what research can and should be done aboard the microgravity laboratory without direct government funding. Our move to purchase commercial cargo resupply and crew transportation to the space station enables U.S. businesses to develop a competitive capability they also can sell as a service to others while freeing our resources for deep space exploration. Private sector participation provides a new model for moving forward in partnership with the government.

2. Supporting Water Purification Efforts Worldwide

15 Ways The International Space Station Is Benefiting Earth

Whether in the confines of the International Space Station or a tiny hut village in sub-Saharan Africa, drinkable water is vital for human survival. Unfortunately, many people around the world lack access to clean water. Using technology developed for the space station, at-risk areas can gain access to advanced water filtration and purification systems, making a life-saving difference in these communities. The Water Security Corporation, in collaboration with other organizations, has deployed systems using NASA water-processing technology around the world.

3. Growing High-Quality Protein Crystals

15 Ways The International Space Station Is Benefiting Earth

There are more than 100,000 proteins in the human body and as many as 10 billion in nature. Every structure is different, and each protein holds important information related to our health and to the global environment. The perfect environment in which to study these structures is space. Microgravity allows for optimal growth of the unique and complicated crystal structures of proteins leading to the development of medical treatments. An example of a protein that was successfully crystallized in space is hematopoietic prostaglandin D synthase (H-PGDS), which may hold the key to developing useful drugs for treating muscular dystrophy. This particular experiment is an example of how understanding a protein’s structure can lead to better drug designs. Further research is ongoing.

4. Bringing Space Station Ultrasound to the Ends of the Earth

15 Ways The International Space Station Is Benefiting Earth

Fast, efficient and readily available medical attention is key to survival in a health emergency. For those without medical facilities within easy reach, it can mean the difference between life and death. For astronauts in orbit about 250 miles above Earth aboard the International Space Station, that problem was addressed through the Advanced Diagnostic Ultrasound in Microgravity (ADUM) investigation. Medical care has become more accessible in remote regions by use of small ultrasound units, tele-medicine, and remote guidance techniques, just like those used for people living aboard the space station.

5. Improving Eye Surgery with Space Hardware

15 Ways The International Space Station Is Benefiting Earth

Laser surgery to correct eyesight is a common practice, and technology developed for use in space is now commonly used on Earth to track a patient’s eye and precisely direct the laser scalpel. The Eye Tracking Device experiment gave researchers insight into how humans’ frames of reference, balance and the overall control of eye movement are affected by weightlessness. In parallel with its use on the space station, the engineers realized the device had potential for applications on Earth. Tracking the eye’s position without interfering with the surgeon’s work is essential in laser surgery. The space technology proved ideal, and the Eye Tracking Device equipment is now being used in a large proportion of corrective laser surgeries throughout the world.

6. Making Inoperable Tumors Operable with a Robotic Arm

15 Ways The International Space Station Is Benefiting Earth

The delicate touch that successfully removed an egg-shaped tumor from Paige Nickason’s brain got a helping hand from a world-renowned arm—a robotic arm, that is. The technology that went into developing neuroArm, the world’s first robot capable of performing surgery inside magnetic resonance machines, was born of the Canadarm (developed in collaboration with engineers at MacDonald, Dettwiler, and Associates, Ltd. [MDA] for the U.S. Space Shuttle Program) as well as Canadarm2 and Dextre, the Canadian Space Agency’s family of space robots performing the heavy lifting and maintenance aboard the International Space Station. Since Nickason’s surgery in 2008, neuroArm has been used in initial clinical experience with 35 patients who were otherwise inoperable.

7. Preventing Bone Loss Through Diet and Exercise

15 Ways The International Space Station Is Benefiting Earth

In the early days of the space station, astronauts were losing about one-and-a-half percent of their total bone mass density per month. Researchers discovered an opportunity to identify the mechanisms that control bones at a cellular level. These scientists discovered that high-intensity resistive exercise, dietary supplementation for vitamin D and specific caloric intake can remedy loss of bone mass in space. The research also is applicable to vulnerable populations on Earth, like older adults, and is important for continuous crew member residency aboard the space station and for deep space exploration to an asteroid placed in lunar orbit and on the journey to Mars.

8. Understanding the Mechanisms of Osteoporosis

15 Ways The International Space Station Is Benefiting Earth

While most people will never experience life in space, the benefits of studying bone and muscle loss aboard the station has the potential to touch lives here on the ground. Model organisms are non-human species with characteristics that allow them easily to be reproduced and studied in a laboratory. Scientists conducted a study of mice in orbit to understand mechanisms of osteoporosis. This research led to availability of a pharmaceutical on Earth called Prolia® to treat people with osteoporosis, a direct benefit of pharmaceutical companies using the spaceflight opportunity available via the national lab to improve health on Earth.

9. Developing Improved Vaccines

15 Ways The International Space Station Is Benefiting Earth

Ground research indicated that certain bacteria, in particular Salmonella, might become more pathogenic (more able to cause disease) during spaceflight. Salmonella infections result in thousands of hospitalizations and hundreds of deaths annually in the United States. While studying them in space, scientists found a pathway for bacterial pathogens to become virulent. Researchers identified the genetic pathway activating in Salmonella bacteria, allowing the increased likelihood to spread in microgravity. This research on the space station led to new studies of microbial vaccine development.

10. Providing Students Opportunities to Conduct Their Own Science in Space

15 Ways The International Space Station Is Benefiting Earth

From the YouTube Space Lab competition, the Student Spaceflight Experiments Program, and SPHERES Zero Robotics, space station educational activities inspire more than 43 million students across the globe. These tyFrom the YouTube Space Lab competition, the Student Spaceflight Experiments Program, and SPHERES Zero Robotics, space station educational activities inspire more than 43 million students across the globe. These types of inquiry-based projects allow students to be involved in human space exploration with the goal of stimulating their studies of science, technology, engineering and mathematics. It is understood that when students test a hypothesis on their own or compare work in a lab to what’s going on aboard the space station, they are more motivated towards math and science.

11. Breast Cancer Detection and Treatment Technology

15 Ways The International Space Station Is Benefiting Earth

A surgical instrument inspired by the Canadian Space Agency’s heavy-lifting and maneuvering robotic arms on the space station is in clinical trials for use in patients with breast cancer. The Image-Guided Autonomous Robot (IGAR) works inside an MRI machine to help accurately identify the size and location of a tumor. Using IGAR, surgeons also will be able to perform highly dexterous, precise movements during biopsies.

12. Monitoring Water Quality from Space

15 Ways The International Space Station Is Benefiting Earth

Though it completed its mission in 2015, the Hyperspectral Imager for the Coastal Ocean (HICO) was an imaging sensor that helped detect water quality parameters such as water clarity, phytoplankton concentrations, light absorption and the distribution of cyanobacteria. HICO was first designed and built by the U.S. Naval Research Laboratory for the Office of Naval Research to assess water quality in the coastal ocean. Researchers at the U.S. Environmental Protection Agency (EPA) took the data from HICO and developed a smartphone application to help determine hazardous concentrations of contaminants in water. With the space station’s regular addition of new instruments to provide a continuous platform for Earth observation, researchers will continue to build proactive environmental protection applications that benefit all life on Earth.

13. Monitoring Natural Disasters from Space

15 Ways The International Space Station Is Benefiting Earth

An imaging system aboard the station, ISS SERVIR Environmental Research and Visualization System (ISERV), captured photographs of Earth from space for use in developing countries affected by natural disasters. A broader joint endeavor by NASA and the U.S. Agency for International Development, known as SERVIR, works with developing nations around the world to use satellites for environmental decision-making. Images from orbit can help with rapid response efforts to floods, fires, volcanic eruptions, deforestation, harmful algal blooms and other types of natural events. Since the station passes over more than 90 percent of the Earth’s populated areas every 24 hours, the ISERV system was available to provide imagery to developing nations quickly, collecting up to 1,000 images per day. Though ISERV successfully completed its mission, the space station continues to prove to be a valuable platform for Earth observation during times of disaster.

14. Describing the Behavior of Fluids to Improve Medical Devices

15 Ways The International Space Station Is Benefiting Earth

Capillary Flow Experiments (CFE) aboard the space station study the movement of a liquid along surfaces, similar to the way fluid wicks along a paper towel. These investigations produce space-based models that describe fluid behavior in microgravity, which has led to a new medical testing device on Earth. This new device could improve diagnosis of HIV/AIDS in remote areas, thanks in part to knowledge gained from the experiments.

15. Improving Indoor Air Quality

15 Ways The International Space Station Is Benefiting Earth

Solutions for growing crops in space now translates to solutions for mold prevention in wine cellars, homes and medical facilities, as well as other industries around the world. NASA is studying crop growth aboard the space station to develop the capability for astronauts to grow their own food as part of the agency’s journey to Mars. Scientists working on this investigation noticed that a buildup of a naturally-occurring plant hormone called ethylene was destroying plants within the confined plant growth chambers. Researchers developed and successfully tested an ethylene removal system in space, called Advanced Astroculture (ADVASC). It helped to keep the plants alive by removing viruses, bacteria and mold from the plant growth chamber. Scientists adapted the ADVASC system for use in air purification. Now this technology is used to prolong the shelf-life of fruits and vegetables in the grocery store, and winemakers are using it in their storage cellars.

For more information on the International Space Station, and regular updates, follow @Space_Station on Twitter. 

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com 


Tags
9 years ago

What’s Up for January?

image

A meteor shower, a binocular comet and the winter circle of stars. Here are the details:

Quadrantid Meteor Shower

image

The Quadrantid meteor shower on Jan. 4 will either sizzle or fizzle for observers in the U.S. The shower may favor the U.S. or it could favor Europe depending on which prediction turns out to be correct. For viewing in the United States, observers should start at 3 a.m. EST. The peak should last about two hours with rates of 120 meteors per hour predicted in areas with a dark sky.

Comet Catalina

image

In the middle of the month, midnight to predawn will be primetime for viewing Comet Catalina. It should be visible with binoculars if you have a dark sky, but a telescope would be ideal. Between the 14th and 17th the comet will pass by two stunning galaxies: M51, the whirlpool galaxy and M101, a fainter spiral galaxy.

Constellation Orion

image

Winter is also the best time to view the constellation Orion in the southeastern sky. Even in the city, you’ll see that it’s stars have different colors. Not telescope needed, just look up a few hours after sunset! The colorful stars of Orion are part of the winter circle of stars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
This image shows a small spacecraft on a table enclosed on all sides except the one facing the camera. The sides of the enclosure are clear while the top has two dark gray panels with a light gray frame. The backside is also gray and reflects a strip of light from the room. The spacecraft’s body is a vertical golden rectangle. Shiny black solar panels extend to either side and are much wider than the spacecraft itself. There are a few wires connected to the table, which are visible underneath it. It’s watermarked, “Credit: NASA/Sophia Roberts.”

Tiny BurstCube's Tremendous Travelogue

Meet BurstCube! This shoebox-sized satellite is designed to study the most powerful explosions in the cosmos, called gamma-ray bursts. It detects gamma rays, the highest-energy form of light.

BurstCube may be small, but it had a huge journey to get to space.

Julie Cox, a mechanical engineer at Goddard, presses aluminized tape to the BurstCube instrument in a laboratory. Julie is wearing a mask, blue lab coat, and gloves, and is holding silver tweezers in one hand. The instrument, which is sitting on a table covered in hardware and tools, has raised silver-colored metal cylinders on top of a flat plate with triangular and rectangular cutouts. A roll of tape sits on the table in the foreground. The image is watermarked with “Credit: NASA/Sophia Roberts.”

First, BurstCube was designed and built at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Here you can see Julie Cox, an early career engineer, working on BurstCube’s gamma-ray detecting instrument in the Small Satellite Lab at Goddard.

BurstCube is a type of spacecraft called a CubeSat. These tiny missions give early career engineers and scientists the chance to learn about mission development — as well as do cool science!

This image shows a woman wearing a long-sleeved blue jacket and blue gloves. Her hair is bound up in a clip. She leans over a table, filling out a form. To the right, on the same table, is a shiny box within another clear box — the BurstCube satellite in its protective case. The dim room behind the woman is full of gray beams that cast shadows against the walls. There is an old white barn door in the far wall. The image is watermarked, “Credit: NASA/Sophia Roberts.”

Then, after assembling the spacecraft, the BurstCube team took it on the road to conduct a bunch of tests to determine how it will operate in space. Here you can see another early career engineer, Kate Gasaway, working on BurstCube at NASA’s Wallops Flight Facility in Virginia.

She and other members of the team used a special facility there to map BurstCube’s magnetic field. This will help them know where the instrument is pointing when it’s in space.

Three men in long-sleeved blue jackets, blue gloves, and red hard hats stand around a thermal vacuum chamber. The chamber has a square silver base and a conical white top. The man on the left is handing a wrench to a man standing on the base of the chamber. On the right, the third man looks up at the top of the chamber. They are in a lab with a high ceiling and lots of electrical equipment. An American flag hangs from the ceiling. The image is watermarked “Credit: NASA/Sophia Roberts.”

The next stop was back at Goddard, where the team put BurstCube in a vacuum chamber. You can see engineers Franklin Robinson, Elliot Schwartz, and Colton Cohill lowering the lid here. They changed the temperature inside so it was very hot and then very cold. This mimics the conditions BurstCube will experience in space as it orbits in and out of sunlight.

A man in a long-sleeved blue jacket, khaki pants, striped socks, and blue shoes sits on a rooftop. In front of him sits a small, shiny, rectangular spacecraft on top of a black case. Bundles of cables connect to the spacecraft and snake off to the right. He’s looking up at a dusky sky, which behind him is streaked with puffy pink and purple clouds. The horizon shows a line of treetops. The image is watermarked “Credit: NASA/Sophia Roberts.”

Then, up on a Goddard rooftop, the team — including early career engineer Justin Clavette — tested BurstCube’s GPS. This so-called open-sky test helps ensure the team can locate the satellite once it’s in orbit.

A black hard-shell box containing the tiny BurstCube satellite sits on a blue economy-class airplane seat by the window. The case has a blue circular NASA sticker, as well as a yellow square sticker, and three other multicolored stickers on the upper half of the case. It is strapped into the seat by a seatbelt. Outside of the window, the wing of the plane is visible, and beyond that, a faint view of the airport. The image is watermarked “Credit: NASA/Julie Cox.”

The next big step in BurstCube’s journey was a flight to Houston! The team packed it up in a special case and took it to the airport. Of course, BurstCube got the window seat!

In this image, a figure in a checkered clean suit and blue gloves loads the BurstCube satellite into a long, gray, rectangular container on a blue table. BurstCube is a smaller rectangle, with gray sides and a shiny black top, where its solar panels rest. In the background, there’s another figure in a clean suit and gloves. There’s a slight reflection that shows this picture was taken through a window. The image is watermarked, “Credit: NASA/Lucia Tian.”

Once in Texas, the BurstCube team joined their partners at Nanoracks (part of Voyager Space) to get their tiny spacecraft ready for launch. They loaded the satellite into a rectangular frame called a deployer, along with another small satellite called SNoOPI (Signals of Opportunity P-band Investigation). The deployer is used to push spacecraft into orbit from the International Space Station.

This photograph shows a rocket launching. The bottom of the image is filled with green vegetation interspersed with blue water. The sky is blue, with white clouds visible in the distance. The rocket is in the air, about two-thirds of the way to the top, followed by a fiery tail. Directly below it, at ground level, is white and gray plume of smoke. This image is watermarked, “Credit: NASA/Glenn Benson”

From Houston, BurstCube traveled to Cape Canaveral Space Force Station in Florida, where it launched on SpaceX’s 30th commercial resupply servicing mission on March 21, 2024. BurstCube traveled to the station along with some other small satellites, science experiments, as well as a supply of fresh fruit and coffee for the astronauts.

In this photograph, the CRS-30 cargo mission is shown docking with the International Space Station. Against a black background, a white cone — the cargo mission — is attached to a cylinder with a whitish top. There are boxes in the foreground. The image is watermarked, “Credit: NASA.”

A few days later, the mission docked at the space station, and the astronauts aboard began unloading all the supplies, including BurstCube!

In this animated GIF, a boxy white tube extends at a 45-degree angle from the bottom right-hand corner. After a moment, two small, dark, rectangular objects come out of the tube. These are the BurstCube and SNoOPI CubeSats. They’re very close together initially, but as they move out of frame, they start to separate. In the background is the blue marble of Earth streaked with white clouds, as seen from the International Space Station. The image is watermarked “Credit: NASA.”

And finally, on April 18, 2024, BurstCube was released into orbit. The team will spend a month getting the satellite ready to search the skies for gamma-ray bursts. Then finally, after a long journey, this tiny satellite can embark on its big mission!

This is a photo of nine members of the BurstCube team. BurstCube is the shoebox-sized satellite sitting behind a clear case in the middle of the group. In the photo are three women and six men. Four people standing form a back row, and the remaining five kneel in front of them on a tile floor. Each wears a brightly colored protective jacket and some are attached by gray cords to the surfaces to help them avoid accumulating static electricity. On the ground in front of the team members is bright yellow caution tape. To the left of the image is additional equipment. The photo is watermarked “Credit NASA/Sophia Roberts.”

BurstCube wouldn’t be the spacecraft it is today without the input of many early career engineers and scientists. Are you interested in learning more about how you can participate in a mission like this one? There are opportunities for students in middle and high school as well as college!

Keep up on BurstCube’s journey with NASA Universe on X and Facebook. And make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

sorry, i don't know much about earth science (though it sounds very intriguing), but - what exactly is it that you do? does it take a lot of time? is it fun but challenging? was it hard to get your job? have you always wanted to work with earth science?


Tags
Loading...
End of content
No more pages to load
  • watch
    watch reblogged this · 1 year ago
  • john-erby
    john-erby liked this · 3 years ago
  • sophisticated-trash
    sophisticated-trash liked this · 3 years ago
  • 2reputationpegacorns
    2reputationpegacorns liked this · 3 years ago
  • bethelnie-blog
    bethelnie-blog liked this · 5 years ago
  • volantenjunger
    volantenjunger liked this · 5 years ago
  • shailendra65631
    shailendra65631 reblogged this · 5 years ago
  • shailendra65631
    shailendra65631 liked this · 5 years ago
  • cherryobvious
    cherryobvious liked this · 5 years ago
  • texboge
    texboge liked this · 5 years ago
  • someoneintheinternet
    someoneintheinternet liked this · 5 years ago
  • insertanonymousname
    insertanonymousname liked this · 5 years ago
  • purpleglitterplanet
    purpleglitterplanet liked this · 5 years ago
  • sirparvis97
    sirparvis97 liked this · 5 years ago
  • reinegro
    reinegro liked this · 5 years ago
  • terrylhills
    terrylhills liked this · 5 years ago
  • luciferspoison
    luciferspoison liked this · 5 years ago
  • blacksea1
    blacksea1 liked this · 5 years ago
  • entersan19
    entersan19 liked this · 5 years ago
  • adt-space
    adt-space reblogged this · 5 years ago
  • ticklemypickle1-blog1
    ticklemypickle1-blog1 liked this · 5 years ago
  • sohellooldfriend
    sohellooldfriend liked this · 5 years ago
  • tracksuitmafia-bro
    tracksuitmafia-bro liked this · 5 years ago
  • burntsam
    burntsam liked this · 5 years ago
  • puppy-n-ottr
    puppy-n-ottr liked this · 5 years ago
  • finding-emo-17
    finding-emo-17 liked this · 5 years ago
  • rose-tinted-juls
    rose-tinted-juls reblogged this · 5 years ago
  • rose-tinted-juls
    rose-tinted-juls liked this · 5 years ago
  • dragons-barb
    dragons-barb liked this · 5 years ago
  • coldbloodedentity
    coldbloodedentity liked this · 5 years ago
  • readinginzerogravity
    readinginzerogravity liked this · 5 years ago
  • lovearcangel
    lovearcangel liked this · 5 years ago
  • delicatemusictale
    delicatemusictale liked this · 5 years ago
  • realspaceships
    realspaceships liked this · 5 years ago
  • kennedyhow
    kennedyhow liked this · 5 years ago
  • dawn-wasabi
    dawn-wasabi liked this · 5 years ago
  • y-natsumi
    y-natsumi liked this · 5 years ago
  • cripple-cat
    cripple-cat liked this · 5 years ago
  • morganthefae
    morganthefae liked this · 5 years ago
  • keira-roses-world
    keira-roses-world liked this · 5 years ago
  • bllsbailey
    bllsbailey liked this · 5 years ago
  • mrgneiss
    mrgneiss liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags