Vote For Your Favorite Astronaut Picture: Tournament Earth 2021

Vote for Your Favorite Astronaut Picture: Tournament Earth 2021

It is that time of year again…Tournament Earth is back! This year, NASA Earth Observatory has chosen a new theme for the tournament: astronaut photography. Choose your favorite image here.

Vote For Your Favorite Astronaut Picture: Tournament Earth 2021

For more than 20 years, astronauts have been shooting photos of Earth from the International Space Station that highlight the planet’s beauty, complexity, and vulnerabilities. So which are the most unforgettable ones? Over the next five weeks (March 8-April 13), you can help decide.

How can you get involved? It's easy as 1…2…3!

1. Read and Vote.

Not sure which image to vote for because they are ALL so captivating? Read the intriguing stories behind the images to help you decide! You can access the stories by clicking on the image headlines on the voting page: https://earthobservatory.nasa.gov/tournament-earth

For instance, the Stars in Motion image is actually a compilation of 72 photographs. And some of the night lights around Bangkok, Thailand, actually show fishing boats as well as city lights.

2. Fill out your bracket.

Think you know which photo will win it all? Fill out a #TournamentEarth bracket with your predictions and challenge friends! Then share your predictions with NASAEarth on our blog, Twitter, Facebook, Instagram, or right here on Tumblr!

We can't offer a trip to the Moon, but bragging rights are forever if you can pick the champion. Download a more print-friendly version of the bracket here.

image

3. View the results…and vote again!

Tournament Earth will have five rounds, and round one is currently underway. Voting for the following rounds begins on Tuesdays and will be open for six days. We will update our social media channels (including right here on Tumblr!) with the newest matchups. Check this space to see how your favorite images did. Then vote until we crown a champion on April 13, 2021.

image

See all of the images and vote HERE. Follow @NASAEarth on social media for updates.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

7 years ago

Measuring Cosmic Rays at the Edge of Space

image

It’s a bird!  It’s a plane!  It’s a… SuperTIGER?

No, that’s not the latest superhero spinoff movie - it’s an instrument launching soon from Antarctica! It’ll float on a giant balloon above 99.5% of the Earth’s atmosphere, measuring tiny particles called cosmic rays.

image

Right now, we have a team of several scientists and technicians from Washington University in St. Louis and NASA at McMurdo Station in Antarctica preparing for the launch of the Super Trans-Iron Galactic Element Recorder, which is called SuperTIGER for short. This is the second flight of this instrument, which last launched in Antarctica in 2012 and circled the continent for a record-breaking 55 days.  

image

SuperTIGER measures cosmic rays, which are itty-bitty pieces of atoms that are zinging through space at super-fast speeds up to nearly the speed of light. In particular, it studies galactic cosmic rays, which means they come from somewhere in our Milky Way galaxy, outside of our solar system.

image

Most cosmic rays are just an individual proton, the basic positively-charged building block of matter. But a rarer type of cosmic ray is a whole nucleus (or core) of an atom - a bundle of positively-charged protons and non-charged neutrons - that allows us to identify what element the cosmic ray is. Those rare cosmic-ray nuclei (that’s the plural of nucleus) can help us understand what happened many trillions of miles away to create this particle and send it speeding our way.

image

The cosmic rays we’re most interested in measuring with SuperTIGER are from elements heavier than iron, like copper and silver. These particles are created in some of the most dynamic and exciting events in the universe - such as exploding and colliding stars.

image

In fact, we’re especially interested in the cosmic rays created in the collision of two neutron stars, just like the event earlier this year that we saw through both light and gravitational waves. Adding the information from cosmic rays opens another window on these events, helping us understand more about how the material in the galaxy is created.

Why does SuperTIGER fly on a balloon?

image

While cosmic rays strike our planet harmlessly every day, most of them are blocked by the Earth’s atmosphere and magnetic field.  That means that scientists have to get far above Earth - on a balloon or spacecraft - to measure an accurate sample of galactic cosmic rays.  By flying on a balloon bigger than a football field, SuperTIGER can get to the edge of space to take these measurements.  

image

It’ll float for weeks at over 120,000 feet, which is nearly four times higher than you might fly in a commercial airplane. At the end of the flight, the instrument will return safely to the ice on a huge parachute. The team can recover the payload from its landing site, bring it back to the United States, repair or make changes to it, if needed, and fly it again another year!

image

There are also cosmic ray instruments on our International Space Station, such as ISS-CREAM and CALET, which each started their development on a series of balloons launched from Antarctica. The SuperTIGER team hopes to eventually take measurements from space, too.  

Why do we launch from Antarctica?

image

McMurdo Station is a hotspot for all sorts of science while it’s summer in the Southern Hemisphere (which is winter here in the United States), including scientific ballooning.  The circular wind patterns around the pole usually keep the balloon from going out over the ocean, making it easier to land and recover the instrument later. And the 24-hour daylight in the Antarctic summer keeps the balloon at a nearly constant height to get very long flights - it would go up and down if it had to experience the temperature changes of day and night. All of that sunlight shining on the instrument's array of solar cells also gives a continuous source of electricity to power everything.

image

Antarctica is an especially good place to fly a cosmic ray instrument like SuperTIGER. The Earth’s magnetic field blocks fewer cosmic rays at the poles, meaning that we can measure more particles as SuperTIGER circles around the South Pole than we would at NASA scientific ballooning sites closer to the Earth’s equator.  

image

The SuperTIGER team is hard at work preparing for launch right now - and their launch window opens soon! Follow @NASABlueshift for updates and opportunities to interact with our scientists on the ice.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

From Racing Suits to Robotic Gloves: How to Gear Up with NASA Technology

Did you know you are surrounded by NASA technology? From your apartment building to the doctor’s office, and even in your cellphone camera, there is more space in your life than you think!

In the latest edition of Spinoff, we are introducing dozens of new ways NASA technology could cross your path. Whether you need an extra “hand” on the production line or a weatherproof jacket, check out how to gear up with technology made for space.

Grip-Strengthening Glove

A man in a blue polo shirt wears a white and yellow grip-strengthening glove, which he uses to lift and turn various objects, including a large wrench.

Robots are crucial to exploring space and other planets – they could even support astronauts and form the advance party for places humans have yet to reach. But the human machine is hard to replicate.

A collaboration with General Motors helped us build Robonaut 2 – and the design for this robot’s hands has been adapted into a robotic glove that helps manufacturing employees, such as automobile workers, reduce injuries and improve quality control.

The Swedish company Bioservo used the Robo-Glove technology to create the world’s first industrial-strength robotic glove for factory workers who perform repetitive manual tasks.

The Ironhand glove adds force to the user’s grip with artificial tendons and pressure sensors on the palm and the fingers.

The result? Reduced strain on the user’s own tendons and muscles, meaning fewer workplace stress injuries and better comfort for workers.

Temperature-Control Fabrics

NASA astronaut Anne McClain displays a U.S. spacesuit glove that consists of several layers for extra thermal protection and comfort. Thermofoil heaters are also attached inside each of the fingertips in one of the layers of the glove.

Spacesuits need major insulation and temperature control to protect astronauts on extravehicular activities, aka spacewalks. To help solve this, we created a phase-change material with help from the Triangle Research and Development Corporation.

With funding from a NASA Small Business Innovation Research contract, Triangle incorporated the material into a fabric glove insert that could maintain a steady temperature by absorbing and releasing heat, ensuring it feels just right.

While the invention never made it to orbit, it did make it into the driver’s seat.

Outlast Technologies exclusively licensed the material from Triangle and has incorporated it into outdoor gear, bedding, and now – auto racing suits with help from Cambridge, England-based Walero.

Cristiana Oprea, a racer, wears a black Walero racing undergarment while sitting on a red divider at the edge of a racetrack.

Due to extreme temperatures in the cockpit, drivers in almost every major racing championship wear Walero for its cooling properties. Cristiana Oprea (pictured) wears it while driving for the European Rally Championship. Credit: Walero

The race undergarments, bonded with fire-retardant material for added protection, help drivers maintain a lower core temperature and heart rate, which means fewer mistakes and better lap times.

The suits have been sold to both amateur racers and professional NASCAR drivers.

Lightweight Rain Jackets

Astronaut John Grunsfeld works on repairs to the Hubble Space Telescope.

The superinsulating material that makes up space blankets is one of our most ubiquitous spinoffs. Found everywhere from inside the walls and roofs of buildings to cryogenic tanks and MRI machines, radiant barrier technology was first created to insulate spacesuits and spacecraft. And now this NASA spinoff can be found in weatherproof jackets as well.

Inspired by her passion to run following a series of surgeries to help correct a life-threatening injury, Hema Nambiar launched her Larchmont, New York, start-up company 13-One. To create her jacket, she worked with Advanced Flexible Materials Inc.’s brand Heatsheets. The brand was already marketing products like the space blankets traditionally distributed after races to prevent dangerous drops in temperature.

A man wears a 13-One jacket.

The 13-One jackets are designed to be warm and weatherproof, but their thin, reflective lining lets them also be lightweight and easily portable. Credit: Lourenso Ramautar, Out of New York Studio

The resulting line of jackets has a black exterior and a lining to reflect body heat. They weigh less than a pound, are wind- and water-resistant, and easily pack into a small, built-in pouch.

Want to check out more NASA spinoffs? Be sure to find us on spinoff.nasa.gov and on Twitter.

Interested in licensing your own NASA technologies? Check out the NASA Technology Transfer program at technology.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
9 years ago

How Well Do You Know Your Space Photos?

Can you guess the subject of each of these pictures? How many will you get right? Test your friends and family to see who knows their space photos the best.

1. Ice on Earth or a Picture of Mars?

image

2. Dry Land on Earth or a Close-Up of Jupiter?

image

3. Mercury or Our Moon?

image

4. Do You Think This is Mars or Our Home Planet?

image

5. Waves on Jupiter or Saturn?

image

6. Is this a picture of Mars or Earth?

image

7. Can You Tell Which is Europa and Which is the Bottom of a Frying Pan?

image

8. Close-Up of Our Moon or Dwarf Planet Ceres?

image

9. A Weird World or Our Own World?

image

10. The Red Planet or a Red Desert?

image

Answers

1. Mars. You might be surprised, but this image taken by our Mars Reconnaissance Orbiter is of a light-toned deposit on the Martian surface. Some shapes in the terrain suggest erosion by a fluid moving north to south.

2. Earth. This image taken by our Earth Observing-1 satellite shows Lake Frome in central Australia. In this image, the salt lake appears bone-dry, filled with off-white sediment. This area of Australia receives 149 to 216 millimeters of rainfall a year on average, and the basins pass most of their time as saltpans.

3. Mercury. Our MESSENGER spacecraft captured this image of Mercury during a fly by in October 2008. It shows previously uncharted regions of the planet that have large craters with an internal smoothness similar to Earth’s own moon. It is thought that these craters were to have been flooded by lava flows that are old but not as old as the surrounding more highly cratered surface.

4. Earth. Surprisingly, this image take from the International Space Station shows the western half of the Arabian peninsula in Saudi Arabia. It not only contains large expanses of sand and gravel, but extensive lava fields known as haraat.

5. Saturn. Although this pattern of waves is similar to those seen on Jupiter, this is actually a picture of Saturn. The pattern of an iconic surfer’s wave, has been observed in many places all over the universe, including at the edges of Earth’s magnetic environment.

6. Mars. This image was taken by our Mars Reconnaissance Orbiter and shows dunes of sand-sized materials that have been trapped on the floors of many Martian craters. The dunes are linear, thought to be due to shifting wind directions.

7. Left: Europa. Right: Frying Pan. Europa is one of Jupiter’s moons, and is about the same size as Earth’s moon.

8. Ceres. This image taken by our Dawn spacecraft shows an intriguing mountain on dwarf planet Ceres protruding from a relatively smooth area.

9. Earth. This image of the Bazman volcano is located in a remote region of souther Iran. While the volcano has the classic cone shape of a stratovolcano, it is also heavily dissected by channels that extend downwards from the summit.

10. Earth. This image of the Great Sandy Desert in northwest Australia shows a variety of dune forms across the region. The photo was taken by the Expedition 35 crew from the International Space Station.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
7 years ago
Our Cassini Spacecraft Has Been Traveling In Space For Almost 20 Years, Exploring Saturn, Its Rings And

Our Cassini spacecraft has been traveling in space for almost 20 years, exploring Saturn, its rings and even some of its moons. This mission has revealed never-before-seen events that are changing our understanding of how planetary systems form and what conditions might lead to habitats for life.

Cassini will complete its remarkable story of exploration with an intentional plunge into Saturn’s atmosphere, ending its mission.  

Participate in our Grand Finale Events

Wednesday, Sept. 13

1 p.m. EDT – News Conference from our Jet Propulsion Laboratory with a detailed preview of final mission activities Watch HERE.

Thursday, Sept 14

4:00 - 5:00 p.m. EDT - NASA Social Live Broadcast with mission experts Watch HERE.

Friday, Sept. 15

7:00 – 8:30 a.m. EDT – Live commentary on NASA TV and online of the spacecraft’s final dive into Saturn’s atmosphere. Watch HERE.

Around 8:00 a.m. EDT – Expected time of last signal and science data from Cassini Watch HERE.

9:30 a.m. EDT – Post-mission news conference Watch HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

Photographing Planets with the Roman Space Telescope

Nearly 100 years ago, astronomer Bernard Lyot invented the coronagraph – a device that made it possible to recreate a total solar eclipse by blocking the Sun’s light. That helped scientists study the Sun’s corona, which is the outermost part of our star’s atmosphere that’s usually hidden by bright light from its surface.

Photographing Planets With The Roman Space Telescope

Our Nancy Grace Roman Space Telescope, now under construction, will test out a much more advanced version of the same thing. Roman’s Coronagraph Instrument will use special masks to block the glare from host stars but allow the light from dimmer, orbiting planets to filter through. It will also have self-flexing mirrors that will measure and subtract starlight automatically.

Photographing Planets With The Roman Space Telescope

This glare-blocking prowess is important because planets can be billions of times dimmer than their host stars! Roman’s high-tech shades will help us take pictures of planets we wouldn’t be able to photograph using any other current telescopes.

Photographing Planets With The Roman Space Telescope

Other observatories mainly use this planet-hunting method, called direct imaging, from the ground to photograph huge, bright planets called “super-Jupiters” in infrared light. These worlds can be dozens of times more massive than Jupiter, and they’re so young that they glow brightly thanks to heat left over from their formation. That glow makes them detectable in infrared light.

Photographing Planets With The Roman Space Telescope

Roman will take advanced planet-imaging tech to space to get even higher-quality pictures. And while it’s known for being an infrared telescope, Roman will actually photograph planets in visible light, like our eyes can see. That means it will be able to see smaller, older, colder worlds orbiting close to their host stars. Roman could even snap the first-ever image of a planet like Jupiter orbiting a star like our Sun.

Astronomers would ultimately like to take pictures of planets like Earth as part of the search for potentially habitable worlds. Roman’s direct imaging efforts will move us a giant leap in that direction!

Photographing Planets With The Roman Space Telescope

And direct imaging is just one component of Roman’s planet-hunting plans. The mission will also use a light-bending method called microlensing to find other worlds, including rogue planets that wander the galaxy untethered to any stars. Scientists also expect Roman to discover 100,000 planets as they cross in front of their host stars!

Photographing Planets With The Roman Space Telescope

Find out more about the Nancy Grace Roman Space Telescope on Twitter and Facebook, and about the person from which the mission draws its name.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
9 years ago

Blizzard 2016 from Space

As an intense winter storm approaches the mid-Atlantic this weekend, our satellites watch from above. The storm is expected to produce a wade swath of more than 2 feet of snow in some areas.

image

The below supercomputer simulation crunched the data to provide a look at the flow of clouds from storm systems around the globe, including the developing blizzard across the eastern United States.

This storm won’t only have a snowy impact on the mid-Atlantic region, but will also cause severe weather in the Gulf Coast. Satellites observe extreme rainfall in the area.

image

Data from NASA-NOAA Suomi NPP satellite and NOAA’s GOES-East satellite are being used to create images and animation of the movement of this powerful storm. For updates, visit: http://www.nasa.gov/feature/goddard/2016/nasa-sees-major-winter-storm-headed-for-eastern-us

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

History Made: Apollo 11 Splashes Down Today in 1969

image

The Apollo 11 Command Module “Columbia” is hoisted onto its recovery ship the USS Hornet, following splashdown on July 24, 1969. Credit: NASA

Four days after their historic achievement, Apollo 11 astronauts Neil Armstrong, Buzz Aldrin and Michael Collins splashed down in the Pacific Ocean at 12:49 p.m. EDT, about 900 miles from Hawaii. The crew was recovered by the crew of the USS Hornet where President Richard Nixon was waiting to greet them. 

Watch a replay of the original live broadcast of the recovery on NASA TV starting at 12:45 p.m. EDT. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

All Eyes on the Sky for the August 21 Total Solar Eclipse

Just two months from now, the moon will completely block the sun’s face, treating part of the US to a total solar eclipse.

image

Everyone in North America will have the chance to see an eclipse of some kind if skies are clear. Anyone within a 70-mile-wide swath of land — called the path of totality — that stretches from Oregon to South Carolina will have the chance to see a total eclipse.

image

Throughout the rest of the continent, including all 50 United States — and even in parts of South America, Africa, Europe, and Asia — the moon will partially obscure the sun, creating a partial eclipse.

image

Photo credit: NASA/Cruikshank

An eclipse is one of nature’s most awesome sights, but safety comes first! When any part of the sun’s surface is exposed, use proper eclipse glasses (not sunglasses) or an indirect viewing method, like a pinhole projector. In the path of totality, it’s safe to look directly at the eclipse ONLY during the brief moments of totality.

image

During a solar eclipse, the moon passes between the sun and Earth, casting a shadow down on Earth’s surface. We’ve been studying the moon with NASA’s Lunar Reconnaissance Orbiter, and its precise mapping helped NASA build the most accurate eclipse map to date.

image

During a total solar eclipse, the moon blocks out the sun’s bright face, revealing the otherwise hidden solar atmosphere, called the corona. The corona is one of the sun’s most interesting regions — key to understanding the root of space weather events that shape Earth’s space environment, and mysteries such as why the sun’s atmosphere is so much hotter than its surface far below.

image

This is the first time in nearly 100 years that a solar eclipse has crossed the United States from coast to coast. We’re taking advantage of this long eclipse path by collecting data that’s not usually accessible — including studying the solar corona, testing new corona-observing instruments, and tracking how our planet’s atmosphere, plants, and animals respond to the sudden loss of light and heat from the sun.

We’ll be studying the eclipse from the ground, from airplanes, with research balloons, and of course, from space.

Three of our sun-watchers — the Solar Dynamics Observatory, IRIS, and Hinode, a joint mission led by JAXA — will see a partial eclipse from space. Several of our Earth-observing satellites will use the eclipse to study Earth under uncommon conditions. For example, both Terra and DSCOVR, a joint mission led by NOAA, will capture images of the moon’s shadow from space. Our Lunar Reconnaissance Orbiter will also turn its instruments to face Earth and attempt to track the moon’s shadow as it moves across the planet.

image

There’s just two months to go until August 21, so make your plans now for the big day! No matter where you are, you can follow the eclipse as it crosses the country with live footage from NASA TV.

Learn more about the upcoming total solar eclipse — including where, when, and how to safely experience it — at eclipse2017.nasa.gov and follow along on Twitter @NASASun.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Earth: Your Home, Our Mission

We pioneer and support an amazing range of advanced technologies and tools to help us better understand our home planet, the solar system and far beyond.

Here are 5 ways our tech improves life here on Earth...

1. Eyes in the Sky Spot Fires on the Ground

image

Our Earth observing satellites enable conservation groups to spot and monitor fires across vast rainforests, helping them protect our planet on Earth Day and every day.

2. Helping Tractors Drive Themselves

image

There has been a lot of talk about self-driving cars, but farmers have already been making good use of self-driving tractors for more than a decade - due in part to a partnership between John Deere and our Jet Propulsion Laboratory.

Growing food sustainably requires smart technology - our GPS correction algorithms help self-driving tractors steer with precision, cutting down on water and fertilizer waste. 

3. Turning Smartphones into Satellites

image

On Earth Day (and every day), we get nonstop "Earth selfies" thanks to Planet Labs' small satellites, inspired by smartphones and created by a team at our Ames Research Center. The high res imagery helps conservation efforts worldwide.

4. Early Flood Warnings

image

Monsoons, perhaps the least understood and most erratic weather pattern in the United States, bring rain vital to agriculture and ecosystems, but also threaten lives and property. Severe flash-flooding is common. Roads are washed out. Miles away from the cloudburst, dry gulches become raging torrents in seconds. The storms are often accompanied by driving winds, hail and barrages of lightning.

We are working to get better forecasting information to the National Oceanic and Atmospheric Administration (NOAA). Our satellites can track moisture in the air - helping forecasters provide an early warning of flash floods from monsoons.

5. Watching the World's Water

image

Around the world, agriculture is by far the biggest user of freshwater. Thanks in part to infrared imagery from Landsat, operated by the U.S. Geological Survey (USGS), we can now map, in real time, how much water a field is using, helping conserve that precious resource.

We use the vantage point of space to understand and explore our home planet, improve lives and safeguard our future. Our observations of Earth’s complex natural environment are critical to understanding how our planet’s natural resources and climate are changing now and could change in the future.

Join the celebration online by using #NASA4Earth. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

What’s Up for March 2017?

What’s Up for March? The moon hides red star Aldebaran and crescents dazzle after dusk.

What’s Up For March 2017?

On March 4 the first quarter moon passes between Earth and the star Aldebaran, temporarily blocking our view of the star. This is called an occultation. 

What’s Up For March 2017?

The occultation begins and concludes at different times, depending on where you are when you view it.

What’s Up For March 2017?

The event should be easy to see from most of the U.S., Mexico, most of Central America, the Western Caribbean and Bermuda. 

What’s Up For March 2017?

Observers along a narrow path from Vancouver, British Columbia, to Hartford, Connecticut, will see the moon “graze” the star. The star will disappear and reappear repeatedly as hills and valleys on the moon alternately obscure and reveal it.

What’s Up For March 2017?

As seen from Earth, both Mercury and Venus have phases like our moon. That’s because they circle the sun inside Earth’s orbit. 

What’s Up For March 2017?

Planets that orbit between Earth and the sun are known as inner or inferior planets.

What’s Up For March 2017?

Inferior planets can never be at “opposition,” which is when the planet and the sun are on opposite sides of Earth.

What’s Up For March 2017?

But inferior planets can be at “conjunction,” which is when a planet, the sun and Earth are all in a straight line. 

What’s Up For March 2017?

Conjunction can happen once when the planet is on the opposite side of the sun from Earth and again when it’s on the same side of the sun as Earth. 

What’s Up For March 2017?

When a planet is on the opposite side of the sun from Earth, we say it is at “superior conjunction.” As the planet moves out from behind the sun and gets closer to Earth, we see less and less of the lit side. We see phases, similar to our moon’s phases. 

What’s Up For March 2017?

Mercury is at superior conjunction on March 6. 

What’s Up For March 2017?

A few weeks later, the planet emerges from behind the sun and we can once again observe it. By the end of March we’ll see a last-quarter Mercury.

What’s Up For March 2017?

 On April 20 Mercury reaches “inferior conjunction.”

What’s Up For March 2017?

Brilliant Venus is also racing toward its own inferior conjunction on March 25. Watch its crescent get thinner and thinner as the planet’s size appears larger and larger, because it is getting closer to Earth.

What’s Up For March 2017?

Finally, look for Jupiter to rise in the East. It will be visible all month long from late evening until dawn.

What’s Up For March 2017?

You can catch up on solar system missions and all of our missions at www.nasa.gov

Watch the full “What’s Up for March 2017″ video here: 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • tess-tickles79
    tess-tickles79 liked this · 4 months ago
  • holidays-events
    holidays-events reblogged this · 7 months ago
  • cpw-nyc
    cpw-nyc liked this · 7 months ago
  • mercurysowntwenty-two
    mercurysowntwenty-two liked this · 3 years ago
  • mrclaw61
    mrclaw61 liked this · 3 years ago
  • wthravn
    wthravn liked this · 3 years ago
  • love2food
    love2food liked this · 3 years ago
  • shybirdstuff
    shybirdstuff liked this · 4 years ago
  • keyvawn
    keyvawn reblogged this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags