Time for some Sun salutations š§
Flow through 133 days of the Sun's activity from Aug. 12 to Dec. 22, 2022, as captured by our Solar Dynamics Observatory. From its orbit around Earth, SDO has steadily imaged the Sun in 4K resolution for nearly 13 years.
Video description: Mellow music plays as compiled images taken every 108 seconds condenses 133 days of solar observations into an hour-long video. The video shows bright active regions passing across the face of the Sun as it rotates.
Credit: NASA's Goddard Space Flight Center, Scott Wiessinger (Lead Producer and editor), Tom Bridgman (Lead Visualizer), Lars Leonhard (music)
It will take incredible power to send the first woman and the next man to the Moonās South Pole by 2024. Ā Thatās where Americaās Space Launch System (SLS) rocket comes in to play.
Providing more payload mass, volume capability and energy to speed missions through deep space than any other rocket, our SLS rocket, along with our lunar Gateway and Orion spacecraft, creates the backbone for our deep space exploration and Artemis lunar mission goals.
Hereās why our SLS rocket is a deep space rocket like no other:
The Artemis missions will send humans 280,000 miles away from Earth. Thatās 1,000 times farther into space than the International Space Station. To accomplish that mega feat, you need a rocket thatās designed to lift ā and lift heavy. With help from a dynamic core stage ā the largest stage we have ever built ā the 5.75-million-pound SLS rocket can propel itself off the Earth. This includes the 57,000 pounds of cargo that will go to the Moon. To accomplish this, SLS will produce 15% more thrust at launch and during ascent than the Saturn V did for the Apollo Program.
Where do our rocketās lift and thrust capabilities come from? If you take a peek under our powerful rocketās hood, so to speak, youāll find a core stage with four RS-25 engines that produce more than 2 million pounds of thrust alongside two solid rocket boosters that each provide another 3.6 million pounds of thrust power. Itās a bold design. Together, they provide an incredible 8.8 million pounds of thrust to power the Artemis missions off the Earth. The engines and boosters are modified heritage hardware from the Space Shuttle Program, ensuring high performance and reliability to drive our deep space missions.
While our rocketās core stage design will remain basically the same for each of the Artemis missions, the SLS rocketās upper stage evolves to open new possibilities for payloads and even robotic scientific missions to worlds farther away than the Moon like Mars, Saturn and Jupiter. For the first three Artemis missions, our SLS rocket uses an interim cryogenic propulsion stage with one RL10 engine to send Orion to the lunar south pole. For Artemis missions following the initial 2024 Moon landing, our SLS rocket will have an exploration upper stage with bigger fuel tanks and four RL10 engines so that Orion, up to four astronauts and larger cargoes can be sent to the Moon, too. Additional core stages and upper stages will support either crewed Artemis missions, science missions or cargo missions for a sustained presence in deep space.
Crews at our Michoud Assembly Facility in New Orleans are in the final phases of assembling the core stage for Artemis Iā and are already working on assembly for Artemis II.
Through the Artemis program, we aim not just to return humans to the Moon, but to create a sustainable presence there as well. While there, astronauts will learn to use the Moonās natural resources and harness our newfound knowledge to prepare for the horizon goal: humans on Mars.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On this day in 1976, we landed an ambitious mission on Mars āā the VikingĀ 2Ā mission.
One of a pair of identical spacecraft, Viking found a place in history when it became the first U.S. mission to successfully land on Mars and return images of the surface.
Viking imaged and collected different types of data on the Martian surface. It also conducted experiments specifically designed to look for possible signs of life.
These experiments discovered unexpected chemical activity in the Martian soil but provided no clear evidence for the presence of living microorganisms.
Viking didnāt find unambiguous signs of life on Mars, but it made astrobiologists wonder if we devised the right tests. To this day, the results from Viking are helping to shape the development of life detection strategies at NASA.
So, whatās next in our search for life?
Our Mars 2020Ā PerseveranceĀ roverĀ is the first mission designed to seek possible signs of past Martian life. For astrobiologists, the answers to questions about Marsā habitability are in Perseveranceās āhands.ā The robot astrobiologist and geologist launched earlier this year on July 30 and will touch down on Mars on Feb. 18, 2021.
Discover more about Viking and the history of exploration at Mars with our āMissions To Marsā graphic history novel here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On July 2, 2019, a total solar eclipse will pass over parts of Argentina and Chile.
Solar eclipses happen when the Moon passes directly between the Sun and Earth, casting its shadow onto Earth's surface. Because the Moonās orbit isn't perfectly in line with the Sun and Earth, its shadow usually passes above or below Earth. But when it lines up just right, we get a solar eclipse!
People in the inner part of the Moon's shadow ā the umbra ā have the chance to witness a total solar eclipse, while those in the outer part of the shadow ā the penumbra ā experience a partial solar eclipse.
The path of the total solar eclipse stretches across parts of Chile and Argentina. People outside this path may see a partial eclipse or no eclipse at all.
During a total solar eclipse, the Moon blocks out the Sun's bright face, revealing its comparatively faint outer atmosphere, the corona. The corona is a dynamic region that is thought to hold the answers to questions about the fundamental physics of the Sun ā like why the corona is so much hotter than the Sun's surface and how the Sun's constant outflow of material, the solar wind, is accelerated to such high speeds.Ā
Image Credit: Miloslav Druckmüller, Peter Aniol, Shadia Habbal
Our Parker Solar ProbeĀ and the upcoming Solar Orbiter mission from the European Space Agency are exploring these questions by flying through the corona itself and taking unprecedented measurements of the conditions there. Plus, our newly-chosen PUNCH mission will create tiny, artificial eclipses in front of its cameras ā using an instrument called a coronagraph ā to study structures in the Sun's corona and examine how it generates the solar wind.
Itās never safe to look directly at the uneclipsed or partially eclipsed Sun ā so youāll need specialĀ solar viewing glassesĀ or an indirect viewing method, likeĀ pinhole projection, to watch the eclipse.Ā
For people in the path of totality, there will be a few brief moments when it is safe to look directly at the eclipse. Only once the Moon has completely covered the Sun and there is no sunlight shining is it safe to look at the eclipse. Make sure you put your eclipse glasses back on or return to indirect viewing before the first flash of sunlight appears around the Moonās edge.
No matter where you are, you can watch the eclipse online! The Exploratorium will be streaming live views of the eclipse with commentary in both English and Spanish starting at 4 p.m. EDT / 1 p.m. PDT on July 2. Watch with us at nasa.gov/live!
Para mÔs información e actualizaciones en español acerca del eclipse, sigue a @NASA_es en Twitter o vea esta hoja de hechos.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Gelatin in space! Ā Looks a bit like a tadpole when it is floating around, but I promise it was a tasty treat for us on the Space Station. Ā The food lab prepared drink bags with gelatin mix inside, and I made gelatin for the crew. It is very tempting to play with your food when it floats.
Brandon Rodriguez is an education specialist at our Jet Propulsion Laboratory (JPL) in Pasadena, California where he provides resources and training to K-12 schools across the Southwest. Working with a team at JPL, he develops content for classroom teachers, visits schools and speaks with students and trains future teachers to bring NASA into their classroom. When heās not in the classroom, Brandonās job takes him on research expeditions all around the world, studying our planetās extreme environments.Ā Ā
Fun fact: Brandon wakes up every morning to teach an 8 a.m. physics class at a charter school before heading to JPL and clocking in at his full time job. When asked why? He shared,Ā āThe truth is that I really feel so much better about my role knowing that weāre not ātellingā teachers what to do from our ivory tower. Instead, I can āshareā with teachers what I know works not just in theory, but because Iām still there in the classroom doing it myself.ā - Brandon Rodriguez
Brandon took time from exciting the next generation of explorers to answer some questions about his life and his career:Ā
I was over the moon when I got a call from NASA Education. I began my career as a research scientist, doing alternative energy work as a chemist. After seven years in the field, I began to feel as if I had a moral responsibility to bring access to science to a the next generation. To do so, I quit my job in science and became a high school science teacher. When NASA called, they asked me if I wanted a way to be both a scientist and an educator- how could I resist?
I haven't been back to Venezuela since I was very young, which has been very difficult for me. Being an immigrant in the USA sometimes feels like you're an outsider of both sides: I'm not truly Latin, nor am I an American. When I was young, I struggled with this in ways I couldn't articulate, which manifested in a lot of anger and got me in quite a bit of trouble. Coming to California and working in schools that are not only primarily Latinx students, but also first generation Latinx has really helped me process that feeling, because it's something I can share with those kids. What was once an alienating force has become a very effective tool for my teaching practice.
I'm so fortunate that my role takes me all over the world and into environments that allow to me to continue to develop while still sharing my strengths with the education community. I visit schools all over California and the Southwest of the USA to bring professional development to teachers passionate about science. But this year, I was also able to join the Ocean Exploration Trust aboard the EV Nautilus as we explored the Pacific Remote Island National Marine Monument. We were at sea for 23 days, sailing from American Samoa to Hawaii, using submersible remotely operated vehicles to explore the ocean floor.Ā
Image Credit: Nautilus LiveĀ
We collected coral and rock samples from places no one has ever explored before, and observed some amazing species of marine creatures along the way.
Image Credit: Nautilus LiveĀ
There's no greater motivation than seeing the product of your hard work, and I get that everyday through students. I get to bring them NASA research that is "hot off the press" in ways that their textbooks never can. They see pictures not online or on worksheets, but from earlier that day as I walked through JPL. It is clearly that much more real and tangible to them when they can access it through their teacher and their community.
As someone who struggled- especially in college- I want people to know that what they struggle with isn't science, it's science classes. The world of research doesn't have exams; it doesn't have blanks to be filled in or facts to be memorized. Science is exploring the unknown. Yes, of course we need the tools to properly explore, and that usually means building a strong academic foundation. But it helped me to differentiate the end goal from the process: I was bad at science tests, but I wanted to someday be very good at science. I could persevere through the former if it got me to the latter.
Europa, without a doubt. Imagine if we found even simple life once more in our solar system- and outside of the habitable zone, no less. What would this mean for finding life outside of our solar system as a result? We would surely need to conclude that our sky is filled with alien worlds looking back at us.
While I never worked closely with the mission, Insight was a really important project for me. It's the first time while at JPL I was able to see the construction, launch and landing of a mission.
For as long as I can remember, I've been watching and reading science fiction, and I continue to be amazed at how fiction informs reality. How long ago was it that in Star Trek, the crew would be handing around these futuristic computer tablets that decades later would become common iPads? Ā In their honor, I would be delighted if we named a ship Enterprise.
Thanks so much Brandon!Ā
Additional Image Credit: MLParker Media
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Congress passed the National Aeronautics and Space Act, on July 16 and President Eisenhower signed it into law on July 29, 1958. We opened for business on Oct. 1, 1958, with T. Keith Glennan as our first administrator. Our history since then tells a story of exploration, innovation and discoveries. The next 60 years, that story continues. Learn more: https://www.nasa.gov/60
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The 2017 Atlantic hurricane season was among the top ten most active seasons in recorded history. Our experts are exploring what made this year particularly active and the science behind some of the biggest storms to date.
After a period of 12 years without a Category 3 or higher hurricane making landfall in the U.S., Hurricane Harvey made landfall over Texas as a Category 4 hurricane this August.
Harvey was also the biggest rainfall event ever to hit the continental U.S. with estimates more than 49 inches of rain.
Data like this from our Global Precipitation Measurement Mission, which shows the amount of rainfall from the storm and temperatures within the story, are helping scientists better understand how storms develop.Ā
The unique vantage point of satellites can also help first responders, and this year satellite data helped organizations map out response strategies during hurricanes Harvey, IrmaĀ and Maria. āØĀ
In addition to satellites, we use ground stations and aircraft to track hurricanes.
We also use the capabilities of satellites like Suomi NPP and others that are able to take nighttime views. In this instance, we were able to view the power outages in Puerto Rico. This allowed first responders to see where the location of impacted urban areas.
The combined effort between us, NOAA, FEMA and other federal agencies helps us understand more about how major storms develop, how they gain strength and how they affect us.Ā
To learn more about how we study storms, go to www.nasa.gov/Hurricanes.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What does actually launching into space feel like?
Using a sustainable architecture and sophisticated hardware unlike any other, the first woman and the next man will set foot on the surface of the Moon by 2024. Artemis I, the first mission of our powerful Space Launch System (SLS) rocket and Orion spacecraft, is an important step in reaching that goal.
As we close out 2019 and look forward to 2020, hereās where we stand in the Artemis story ā and what to expect in 2020.Ā
The Artemis I Orion spacecraft arrived at our Plum Brook Station in Sandusky, Ohio, on Tuesday, Nov. 26 for in-space environmental testing in preparation for Artemis I.
This four-month test campaign will subject the spacecraft, consisting of its crew module and European-built service module, to the vacuum, extreme temperatures (ranging from -250° to 300° F) and electromagnetic environment it will experience during the three-week journey around the Moon and back. The goal of testing is to confirm the spacecraftās components and systems work properly under in-space conditions, while gathering data to ensure the spacecraft is fit for all subsequent Artemis missions to the Moon and beyond. This is the final critical step before the spacecraft is ready to be joined with the Space Launch System rocket for this first test flight in 2020!
On Dec. 9, we welcomed members of the public to our Michoud Assembly Facility in New Orleans for #Artemis Day and to get an up-close look at the hardware that will help power our Artemis missions. The 43-acre facility has more than enough room for guests and the Artemis I, II, and III rocket hardware! NASA Administrator Jim Bridenstine formally unveiled the fully assembled core stage of our SLS rocket for the first Artemis mission to the Moon, then guests toured of the facility to see flight hardware for Artemis II and III. The full-day event ā complete with two panel discussions and an exhibit hall ā marked a milestone moment as we prepare for an exciting next phase in 2020.
Once engineers and technicians at Michoud complete functional testing on the Artemis I core stage, it will be rolled out of the Michoud factory and loaded onto our Pegasus barge for a very special delivery indeed. About this time last year, our Pegasus barge crew was delivering a test version of the liquid hydrogen tank from Michoud to NASAās Marshall Space Flight Center in Huntsville for structural testing. This season, the Pegasus team will be transporting a much larger piece of hardware ā the entire core stage ā on a slightly shorter journey to the agencyās nearby Stennis Space Center near Bay St. Louis, Mississippi.
Why Stennis, you ask? The giant core stage will be locked and loaded into the B2 Test Stand there for the landmark Green Run test series. During the test series, the entire stage, including its extensive avionics and flight software systems, will be tested in full. The series will culminate with a hot fire of all four RS-25 engines and will certify the complex stage āgo for launch.ā The next time the core stage and its four engines fire as one will be on the launchpad at NASAās Kennedy Space Center in Florida.
As Orion and SLS make progress toward the pad for Artemis I, employees at NASA centers and large and small companies across America are hard at work assembling and manufacturing flight hardware for Artemis II and beyond. Ā The second mission of SLS and Orion will be a test flight with astronauts aboard that will go around the Moon before returning home. Our work today will pave the way for a new generation of moonwalkers and Artemis explorers.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our flying observatory SOFIA carries a telescope inside this Boeing 747SP aircraft. Scientists use SOFIA to study the universe ā including stars, planets and black holes ā while flying as high as 45,000 feet.
SOFIA is typically based at our Armstrong Flight Research Center in Palmdale, California, but recently arrived in Christchurch, New Zealand, to study celestial objects that are best observed from the Southern Hemisphere.
So what will we study from the land down under?
Eta Carinae, in the southern constellation Carina, is the most luminous stellar system within 10,000 light-years of Earth. Itās made of two massive stars that are shrouded in dust and gas from its previous eruptions and may one day explode as a supernova. We will analyze the dust and gas around it to learn how this violent system evolves.
We can study magnetic fields in the center of our Milky Way galaxy from New Zealand because there the galaxy is high in the sky ā where we can observe it for long periods of time. We know that this area has strong magnetic fields that affect the material spiraling into the black hole here and forming new stars. But we want to learn about their shape and strength to understand how magnetic fields affect the processes in our galactic center.
Titan is Saturnās largest moon and is the only moon in our solar system to have a thick atmosphere ā itās filled with a smog-like haze. It also has seasons, each lasting about seven Earth years. We want to learn if its atmosphere changes seasonally.
Titan will pass in front of a star in an eclipse-like event called an occultation. Weāll chase down the shadow it casts on Earthās surface, and fly our airborne telescope directly in its center.Ā
From there, we can determine the temperature, pressure and density of Titanās atmosphere. Now that our Cassini Spacecraft has ended its mission, the only way we can continue to monitor its atmosphere is by studying these occultation events.
The Large Magellanic Cloud is a galaxy near our own, but itās only visible from the Southern Hemisphere! Inside of it are areas filled with newly forming stars and the leftovers from a supernova explosion.
The Tarantula Nebula, also called 30 Doradus, is located in the Large Magellanic Cloud and shown here in this image from Chandra, Hubble and Spitzer. It holds a cluster of thousands of stars forming simultaneously. Once the stars are born, their light and winds push out the material leftover from their parent clouds ā potentially leaving nothing behind to create more new stars. We want to know if the material is still expanding and forming new stars, or if the star-formation process has stopped. So our team on SOFIA will make a map showing the speed and direction of the gas in the nebula to determine whatās happening inside it.
Also in the Large Magellanic Cloud is Supernova 1987A, the closest supernova explosion witnessed in almost 400 years. We will continue studying this supernova to better understand the material expanding out from it, which may become the building blocks of future stars and planets. Many of our telescopes have studied Supernova 1987A, including the Hubble Space Telescope and the Chandra X-ray Observatory, but our instruments on SOFIA are the only tools we can use to study the debris around it with infrared light, which let us better understand characteristics of the dust that cannot be measured using other wavelengths of light.
For live updates about our New Zealand observations follow SOFIA on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. Ā
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts