This video is a compilation of ultra-high definition time-lapses of the aurora shot from the space station. Auroras are a space weather phenomenon that occur when electrically-charged electrons and protons collide with neutral atoms in the upper atmosphere. The dancing lights of the aurora provide a spectacular show for those on the ground, but also capture the imaginations of scientists who study the aurora and the complex processes that create them.
Born February 9, 1960, Peggy A. Whitson (Ph.D.) flew on Expedition 50/51 and participated in four spacewalks, bringing her career total to ten. With a total of 665 days in space, Whitson holds the U.S. record, placing eighth on the all-time space endurance list. The Iowa native also completed two six-month tours of duty aboard the station for Expedition 5 in 2002, and as the station commander for Expedition 16 in 2008 where she accumulated 377 days in space between the two missions, the most for any U.S. woman at the time of her return to Earth.
Education: Graduated from Mt. Ayr Community High School, Mt. Ayr, Iowa, in 1978; received a Bachelor of Science in Biology/Chemistry from Iowa Wesleyan College in 1981 and a Doctorate in Biochemistry from Rice University in 1985.
Experience: From 1981 to 1985, Dr. Whitson conducted her graduate work in Biochemistry at Rice University, Houston, Texas, as a Robert A. Welch Predoctoral Fellow. Following completion of her graduate work, she continued at Rice University as a Robert A. Welch Postdoctoral Fellow until October 1986. Following this position, she began her studies at NASA Johnson Space Center (JSC), Houston, Texas, as a National Research Council Resident Research Associate. From April 1988 until September 1989, Whitson served as the Supervisor for the Biochemistry Research Group at KRUG International, a medical sciences contractor at NASA-JSC. From 1991 to 1997, Whitson was invited to be an Adjunct Assistant Professor in the Department of Internal Medicine and Department of Human Biological Chemistry and Genetics at University of Texas Medical Branch, Galveston, Texas. In 1997, Whitson began a position as Adjunct Assistant Professor at Rice University in the Maybee Laboratory for Biochemical and Genetic Engineering.
NASA Experience: From 1989 to 1993, Dr. Whitson worked as a Research Biochemist in the Biomedical Operations and Research Branch at NASA’s Johnson Space Center. From 1991 to 1993, she served as Technical Monitor of the Biochemistry Research Laboratories in the Biomedical Operations and Research Branch. From 1991 to 1992, she was the Payload Element Developer for the Bone Cell Research Experiment (E10) aboard SL-J (STS-47) and was a member of the U.S.-USSR Joint Working Group in Space Medicine and Biology. In 1992, she was named the Project Scientist of the Shuttle-Mir Program (STS-60, STS‑63, STS-71, Mir 18, Mir 19) and served in this capacity until the conclusion of the Phase 1A Program in 1995. From 1993 to 1996, Whitson held the additional responsibilities of the Deputy Division Chief of the Medical Sciences Division at Johnson Space Center. From 1995 to 1996, she served as Co-Chair of the U.S.-Russian Mission Science Working Group. In April 1996, she was selected as an Astronaut Candidate and started training in August 1996. Upon completing two years of training and evaluation, she was assigned technical duties in the Astronaut Office Operations Planning Branch and served as the lead for the Crew Test Support Team in Russia from 1998 to 1999. From November 2003 to March 2005, she served as Deputy Chief of the Astronaut Office. Also in 2003, she served as commander of the fifth NASA Extreme Environment Mission Operations (NEEMO) mission.
From March 2005 to November 2005, she served as Chief of the Station Operations Branch, Astronaut Office. Whitson trained as the backup ISS commander for Expedition 14 from November 2005 to September 2006. Whitson also was a member of the 2004 Astronaut Selection Board and chaired the Astronaut Selection Board in 2009.
Whitson completed two six-month tours of duty aboard the International Space Station, the second as the station commander for Expedition 16 in April 2008. This was Whitson’s second long-duration spaceflight. She has accumulated 377 days in space between the two missions, the most for any woman. Whitson has also performed a total of six career spacewalks, adding up to 39 hours and 46 minutes.
From October 2009 to July 2012, Whitson served as Chief of the Astronaut Corps and was responsible for the mission preparation activities and on-orbit support of all International Space Station crews and their support personnel. She was also responsible for organizing the crew interface support for future heavy launch and commercially-provided transport vehicles. Whitson was the first female, nonmilitary Chief of the Astronaut Office.
Spaceflight Experience: Expedition 5 (June 5 through December 7, 2002). The Expedition 5 crew launched on June 5, 2002, aboard STS-111 and docked with the International Space Station on June 7, 2002. During her six-month stay aboard the space station, Dr. Whitson installed the Mobile Base System, the S1 truss segment and the P1 truss segment, using the Space Station Remote Manipulator System; performed a four hour and 25-minute Orlan spacewalk to install micrometeoroid shielding on the Zvezda Service Module and activated and checked out the Microgravity Sciences Glovebox, a facility class payload rack. She was named the first NASA Science Officer during her stay, and she conducted 21 investigations in human life sciences and microgravity sciences as well as commercial payloads. The Expedition 5 crew (one American astronaut and two Russian cosmonauts) returned to Earth aboard STS-113 on December 7, 2002. Completing her first flight, Dr. Whitson logged 184 days, 22 hours and 14 minutes in space.
Expedition 16 (October 10 through April 19, 2008). The Expedition 16 crew of Whitson and Cosmonaut Yuri Malenchenko launched on October 10, 2007, aboard a Soyuz TMA-11 spacecraft and docked with the International Space Station on October 12, 2007. The third crew member position for this expedition was filled by astronauts rotating in and out via shuttle flights and included Clay Anderson, Dan Tani, Leo Eyharts and Garrett Reisman. As commander, Whitson oversaw the first expansion of the station’s living and working space in more than six years. The station and visiting space shuttle crews added the Harmony connecting node, the European Space Agency’s Columbus laboratory, the Japan Aerospace Exploration Agency’s Kibo logistics pressurized module and the Canadian Space Agency’s Dextre robot. Whitson performed five spacewalks to conduct assembly and maintenance tasks outside the complex. She and Malenchenko undocked from the station and returned to Earth on April 19, 2008, aboard the Soyuz TMA-11 spacecraft. Whitson logged 192 days in space.
Whitson launched on November 17, 2016, as part of Expedition 50/51 and returned safely on Earth on September 3, 2017. She contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science, welcomed several cargo spacecraft delivering tons of supplies and research experiments, and conducted a combined six spacewalks to perform maintenance and upgrades to the station. Whitson participated in four spacewalks, bringing her career total to ten. With a total of 665 days in space, Whitson holds the U.S. record, placing eighth on the all-time space endurance list.
Awards/Honors: Inducted into Iowa Aviation Hall of Fame (2011); BioHouston Women in Science Award (2011); Houston’s 50 Most Influential Women of 2011; Russian Medal of Merit for Space (2011); Texas Women on the Move award recipient (2010); Distinguished Alumni Award, Rice University (2010); NASA Space Flight Medal (2002, 2008); First Lady of Iowa Award presented by the Iowa High School Girls’ Athletic Union (2010); Iowa Transportation Museum, Hero of Valor (2009); Lion’s Club Mount Ayr Elementary Science Lab dedication, Peggy Whitson Science Center (2008); NASA Outstanding Leadership Medal (2006); Distinguished Alumni Award, Iowa Wesleyan College (2002); two patents approved (1997, 1998); Group Achievement Award for Shuttle-Mir Program (1996); American Astronautical Society Randolph Lovelace II Award (1995); NASA Tech Brief Award (1995); NASA Space Act Board Award (1995, 1998); NASA Silver Snoopy Award (1995); NASA Exceptional Service Medal (1995, 2003, 2006, 2008); NASA Space Act Award for Patent Application; NASA Certificate of Commendation (1994); Selected for Space Station Redesign Team (March to June 1993); NASA Sustained Superior Performance Award (1990); Krug International Merit Award (1989); NASA JSC National Research Council Resident Research Associate (1986 to 1988); Summa Cum Laude from Iowa Wesleyan College (1981); President’s Honor Roll (1978 to 1981); Orange van Calhoun Scholarship (1980); State of Iowa Scholar (1979); Academic Excellence Award (1978).
Image Credits: NASA
We’re Turning 100! Celebrate With Us
Our James Webb Space Telescope is the most ambitious and complex space science observatory ever built. It will study every phase in the history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.
In order to carry out such a daring mission, many innovative and powerful new technologies were developed specifically to enable Webb to achieve its primary mission.
Here are 5 technologies that were developed to help Webb push the boundaries of space exploration and discovery:
Microshutters are basically tiny windows with shutters that each measure 100 by 200 microns, or about the size of a bundle of only a few human hairs.
The microshutter device will record the spectra of light from distant objects (spectroscopy is simply the science of measuring the intensity of light at different wavelengths. The graphical representations of these measurements are called spectra.)
Other spectroscopic instruments have flown in space before but none have had the capability to enable high-resolution observation of up to 100 objects simultaneously, which means much more scientific investigating can get done in less time.
Read more about how the microshutters work HERE.
Webb’s backplane is the large structure that holds and supports the big hexagonal mirrors of the telescope, you can think of it as the telescope’s “spine”. The backplane has an important job as it must carry not only the 6.5 m (over 21 foot) diameter primary mirror plus other telescope optics, but also the entire module of scientific instruments. It also needs to be essentially motionless while the mirrors move to see far into deep space. All told, the backplane carries more than 2400kg (2.5 tons) of hardware.
This structure is also designed to provide unprecedented thermal stability performance at temperatures colder than -400°F (-240°C). At these temperatures, the backplane was engineered to be steady down to 32 nanometers, which is 1/10,000 the diameter of a human hair!
Read more about the backplane HERE.
One of the Webb Space Telescope’s science goals is to look back through time to when galaxies were first forming. Webb will do this by observing galaxies that are very distant, at over 13 billion light years away from us. To see such far-off and faint objects, Webb needs a large mirror.
Webb’s scientists and engineers determined that a primary mirror 6.5 meters across is what was needed to measure the light from these distant galaxies. Building a mirror this large is challenging, even for use on the ground. Plus, a mirror this large has never been launched into space before!
If the Hubble Space Telescope’s 2.4-meter mirror were scaled to be large enough for Webb, it would be too heavy to launch into orbit. The Webb team had to find new ways to build the mirror so that it would be light enough - only 1/10 of the mass of Hubble’s mirror per unit area - yet very strong.
Read more about how we designed and created Webb’s unique mirrors HERE.
Wavefront sensing and control is a technical term used to describe the subsystem that was required to sense and correct any errors in the telescope’s optics. This is especially necessary because all 18 segments have to work together as a single giant mirror.
The work performed on the telescope optics resulted in a NASA tech spinoff for diagnosing eye conditions and accurate mapping of the eye. This spinoff supports research in cataracts, keratoconus (an eye condition that causes reduced vision), and eye movement – and improvements in the LASIK procedure.
Read more about the tech spinoff HERE.
Webb’s primary science comes from infrared light, which is essentially heat energy. To detect the extremely faint heat signals of astronomical objects that are incredibly far away, the telescope itself has to be very cold and stable. This means we not only have to protect Webb from external sources of light and heat (like the Sun and the Earth), but we also have to make all the telescope elements very cold so they don’t emit their own heat energy that could swamp the sensitive instruments. The temperature also must be kept constant so that materials aren’t shrinking and expanding, which would throw off the precise alignment of the optics.
Each of the five layers of the sunshield is incredibly thin. Despite the thin layers, they will keep the cold side of the telescope at around -400°F (-240°C), while the Sun-facing side will be 185°F (85°C). This means you could actually freeze nitrogen on the cold side (not just liquify it), and almost boil water on the hot side. The sunshield gives the telescope the equivalent protection of a sunscreen with SPF 1 million!
Read more about Webb’s incredible sunshield HERE.
Learn more about the Webb Space Telescope and other complex technologies that have been created for the first time by visiting THIS page.
For the latest updates and news on the Webb Space Telescope, follow the mission on Twitter, Facebook and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Voyager 2 Photograph of Jupiter
A photo of Jupiter. Took by Voyager with VGISS on July 02, 1979 at 06:01:35. Detail page on OPUS database.
We’re getting ready to start our next mission to find new worlds! The Transiting Exoplanet Survey Satellite (TESS) will find thousands of planets beyond our solar system for us to study in more detail. It’s preparing to launch from our Kennedy Space Center at Cape Canaveral in Florida.
Once it launches, TESS will look for new planets that orbit bright stars relatively close to Earth. We’re expecting to find giant planets, like Jupiter, but we’re also predicting we’ll find Earth-sized planets. Most of those planets will be within 300 light-years of Earth, which will make follow-up studies easier for other observatories.
TESS will find these new exoplanets by looking for their transits. A transit is a temporary dip in a star’s brightness that happens with predictable timing when a planet crosses between us and the star. The information we get from transits can tell us about the size of the planet relative to the size of its star. We’ve found nearly 3,000 planets using the transit method, many with our Kepler space telescope. That’s over 75% of all the exoplanets we’ve found so far!
TESS will look at nearly the entire sky (about 85%) over two years. The mission divides the sky into 26 sectors. TESS will look at 13 of them in the southern sky during its first year before scanning the northern sky the year after.
What makes TESS different from the other planet-hunting missions that have come before it? The Kepler mission (yellow) looked continually at one small patch of sky, spotting dim stars and their planets that are between 300 and 3,000 light-years away. TESS (blue) will look at almost the whole sky in sections, finding bright stars and their planets that are between 30 and 300 light-years away.
TESS will also have a brand new kind of orbit (visualized below). Once it reaches its final trajectory, TESS will finish one pass around Earth every 13.7 days (blue), which is half the time it takes for the Moon (gray) to orbit. This position maximizes the amount of time TESS can stare at each sector, and the satellite will transmit its data back to us each time its orbit takes it closest to Earth (orange).
Kepler’s goal was to figure out how common Earth-size planets might be. TESS’s mission is to find exoplanets around bright, nearby stars so future missions, like our James Webb Space Telescope, and ground-based observatories can learn what they’re made of and potentially even study their atmospheres. TESS will provide a catalog of thousands of new subjects for us to learn about and explore.
The TESS mission is led by MIT and came together with the help of many different partners. Learn more about TESS and how it will further our knowledge of exoplanets, or check out some more awesome images and videos of the spacecraft. And stay tuned for more exciting TESS news as the spacecraft launches!
Join mission experts to learn more about TESS, how it will search for worlds beyond our solar system and what scientists hope to find! Have questions? Use #askNASA to have them answered live during the broadcast.
Get an update on the spacecraft, the rocket and the liftoff operations ahead of the April 16 launch! Have questions? Use #askNASA to have them answered live during the broadcast.
Hear from mission scientists and experts about the science behind the TESS mission. Have questions? Use #askNASA to have them answered live during the broadcast.
This live show will dive into the science behind the TESS spacecraft, explain how we search for planets outside our solar system and will allow you to ask your questions to members of the TESS team.
This half-hour live show will discuss the TESS spacecraft, the science of searching for planets outside our solar system, and the launch from Cape Canaveral.
Join us live on Reddit for a Science AMA to discuss the hunt for exoplanets and the upcoming launch of TESS!
TESS is slated to launch at 6:32 p.m. EDT on a SpaceX Falcon 9 rocket from our Kennedy Space Center in Florida.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Orion was making waves at @nasalangley this week
From enabling astronauts to practice moon landings to aircraft crash testing to drop tests for Orion, NASA's gantry has come full circle.
The gantry, a 240-foot high, 400-foot-long, 265-foot-wide A-frame steel structure located at Langley Research Center in Hampton, Va., was built in 1963 and was used to model lunar gravity. Originally named the Lunar Landing Research Facility (LLRF), the gantry became operational in 1965 and allowed astronauts like Neil Armstrong and Edwin "Buzz" Aldrin to train for Apollo 11's final 150 feet before landing on the moon.
Because the moon's gravity is only 1/6 as strong as Earth's, the gantry had a suspension system that supported 5/6 of the total weight of the Lunar Excursion Module Simulator (LEMS), the device the astronauts used to perform the tests. This supportive suspension system imitated the moon's gravitational environment. Additionally, many of the tests were conducted at night to recreate lighting conditions on the moon.
Neil Armstrong with the LEMS at the Lunar Landing Research Facility. This picture (below) was taken in February 1969 - just five months before Armstrong would become the first person to set foot on the surface of the moon.
Aircraft Crash Test Research
After the Apollo program concluded, a new purpose emerged for the gantry – aircraft crash testing. In 1972, the gantry was converted into the Impact Dynamics Research Facility (IDRF) and was used to investigate the crashworthiness of General Aviation (GA) aircraft and rotorcraft. The facility performed full-scale crash tests of GA aircraft and helicopters, system qualification tests of Army helicopters, vertical drop tests of Boeing 707 and composite fuselage sections and drop tests of the F-111 crew escape capsule.
The gantry was even used to complete a number of component tests in support of the Mars Sample Return Earth Entry Vehicle.
With features including a bridge and a 72-foot vertical drop tower, the gantry was able to support planes that weighed up to 30,000 pounds. Engineers lifted aircraft as high as 200 feet in the air and released them to determine how well the craft endured the crash. Data from the crash tests were used to define a typical acceleration for survivable crashes as well as to establish impact criteria for aircraft seats. The impact criteria are still used today as the Federal Aviation Administration standard for certification.
In 1985, the structure was named a National Historic Landmark based on its considerable contributions to the Apollo program.
Revitalized Space Mission
The gantry provides engineers and astronauts a means to prepare for Orion's return to Earth from such missions. With its new mission, the gantry also received a new name – the Landing and Impact Research (LandIR) Facility.
Although originally capable of supporting only 30,000 pounds, the new bridge can bear up to 64,000 pounds after the summer 2007 renovations. Other renovations include a new elevator, floor repairs and a parallel winch capability that allows an accurate adjustment of the pitch of the test article. The new parallel winch system increases the ability to accurately control impact pitch and pitching rotational rate. The gantry can also perform pendulum swings from as high as 200 feet with resultant velocities of over 70 miles per hour.
The gantry makes researching for the optimal landing alternative for NASA's first attempted, manned dry landing on Earth possible. Orion's return on land rather than water will facilitate reuse of the capsule. A water landing would make reuse difficult due to the corrosiveness of salt water.
The testing process involves lifting the test article by steel cables to a height between 40 and 60 feet and swinging it back to Earth. Although the airbags appear most promising, the gantry has the capability to perform different kinds of tests, including a retro rocket landing system and a scale-model, water landing test using a four-foot-deep circular pool. So far, three types of tests have been conducted in support of the Orion program, each progressing from the previous to more realistic features.
The first test consisted of dropping a boilerplate test article that was half the diameter of what Orion will be. For the second round of testing, engineers added a welded structure to the top, with a shape more comparable to Orion to examine the article's tendency to flip or remain upright.
Hydro-Impact
The on-going tests for Orion continue with impacts on water. This is to ensure astronaut safety during a return to Earth mission. Similar to the Apollo program, Orion will re-enter Earth’s atmosphere at very high speeds and after slowing down, deploy parachutes to further slow the descent into the ocean. At NASA Langley Research Center, engineers use the hydro-impact research to determine the stresses on the vehicle and examine its behavior during a mock splashdown.
A test version of the Orion spacecraft is pulled back like a pendulum and released, taking a dive into the 20-foot-deep Hydro Impact Basin at NASA’s Langley Research Center in Hampton, Virginia. Crash-test dummies wearing modified Advanced Crew Escape Suits are securely seated inside the capsule to help engineers understand how splashdown in the ocean during return from a deep-space mission could impact the crew and seats. Each test in the water-impact series simulates different scenarios for Orion’s parachute-assisted landings, wind conditions, velocities and wave heights the spacecraft and crew may experience when landing in the ocean upon return missions in support of the journey to Mars.
About three quarters of ISS astronauts experience changes in the structure and function of their eyes. An experiment on the space station called the “Fluid Shifts Study” is investigating these vision problems in space.
Visit http://science.nasa.gov/ for more.
http://www.nasa.gov/station
@nasa