We’re getting ready to start our next mission to find new worlds! The Transiting Exoplanet Survey Satellite (TESS) will find thousands of planets beyond our solar system for us to study in more detail. It’s preparing to launch from our Kennedy Space Center at Cape Canaveral in Florida.
Once it launches, TESS will look for new planets that orbit bright stars relatively close to Earth. We’re expecting to find giant planets, like Jupiter, but we’re also predicting we’ll find Earth-sized planets. Most of those planets will be within 300 light-years of Earth, which will make follow-up studies easier for other observatories.
TESS will find these new exoplanets by looking for their transits. A transit is a temporary dip in a star’s brightness that happens with predictable timing when a planet crosses between us and the star. The information we get from transits can tell us about the size of the planet relative to the size of its star. We’ve found nearly 3,000 planets using the transit method, many with our Kepler space telescope. That’s over 75% of all the exoplanets we’ve found so far!
TESS will look at nearly the entire sky (about 85%) over two years. The mission divides the sky into 26 sectors. TESS will look at 13 of them in the southern sky during its first year before scanning the northern sky the year after.
What makes TESS different from the other planet-hunting missions that have come before it? The Kepler mission (yellow) looked continually at one small patch of sky, spotting dim stars and their planets that are between 300 and 3,000 light-years away. TESS (blue) will look at almost the whole sky in sections, finding bright stars and their planets that are between 30 and 300 light-years away.
TESS will also have a brand new kind of orbit (visualized below). Once it reaches its final trajectory, TESS will finish one pass around Earth every 13.7 days (blue), which is half the time it takes for the Moon (gray) to orbit. This position maximizes the amount of time TESS can stare at each sector, and the satellite will transmit its data back to us each time its orbit takes it closest to Earth (orange).
Kepler’s goal was to figure out how common Earth-size planets might be. TESS’s mission is to find exoplanets around bright, nearby stars so future missions, like our James Webb Space Telescope, and ground-based observatories can learn what they’re made of and potentially even study their atmospheres. TESS will provide a catalog of thousands of new subjects for us to learn about and explore.
The TESS mission is led by MIT and came together with the help of many different partners. Learn more about TESS and how it will further our knowledge of exoplanets, or check out some more awesome images and videos of the spacecraft. And stay tuned for more exciting TESS news as the spacecraft launches!
Join mission experts to learn more about TESS, how it will search for worlds beyond our solar system and what scientists hope to find! Have questions? Use #askNASA to have them answered live during the broadcast.
Get an update on the spacecraft, the rocket and the liftoff operations ahead of the April 16 launch! Have questions? Use #askNASA to have them answered live during the broadcast.
Hear from mission scientists and experts about the science behind the TESS mission. Have questions? Use #askNASA to have them answered live during the broadcast.
This live show will dive into the science behind the TESS spacecraft, explain how we search for planets outside our solar system and will allow you to ask your questions to members of the TESS team.
This half-hour live show will discuss the TESS spacecraft, the science of searching for planets outside our solar system, and the launch from Cape Canaveral.
Join us live on Reddit for a Science AMA to discuss the hunt for exoplanets and the upcoming launch of TESS!
TESS is slated to launch at 6:32 p.m. EDT on a SpaceX Falcon 9 rocket from our Kennedy Space Center in Florida.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
NASA Astronomy Picture of the Day 2016 April 6
Jupiter has auroras. Like near the Earth, the magnetic field of our Solar System’s largest planet compresses when impacted by a gust of charged particles from the Sun. This magnetic compression funnels charged particles towards Jupiter’s poles and down into the atmosphere. There, electrons are temporarily excited or knocked away from atmospheric gases, after which, when de-exciting or recombining with atmospheric ions, auroral light is emitted. The featured illustration portrays the magnificent magnetosphere around Jupiter in action. In the inset image released last month, the Earth-orbiting Chandra X-ray Observatory shows unexpectedly powerful X-ray light emitted by Jovian auroras, depicted in false-colored purple. That Chandra inset is superposed over an optical image taken at a different time by the Hubble Space Telescope. This aurora on Jupiter was seen in October 2011, several days after the Sun emitted a powerful Coronal Mass Ejection (CME).
Today (4/06), we celebrate the special radio frequency transmitted by emergency beacons to the international search and rescue network.
This 406 MHz frequency, used only for search and rescue, can be “heard” by satellites hundreds of miles above the ground! The satellites then “forward” the location of the beacon back to Earth, helping first responders locate people in distress worldwide, whether from a plane crash, a boating accident or other emergencies.
Our Search and Rescue office, based out of our Goddard Space Flight Center, researches and develops emergency beacon technology, passing the technology to companies who manufacture the beacons, making them available to the public at retail stores. The beacons are designed for personal, maritime and aviation use.
The search and rescue network, Cospas-Sarsat, is an international program that ensures the compatibility of distress alert services with the needs of users. Its current space segment relies on instruments onboard low-Earth and geosynchronous orbiting satellites, hundreds to thousands of miles above us.
Space instruments forward distress signals to the search and rescue ground segment, which is operated by partner organizations around the world! They manage specific regions of the ground network. For example, the National Oceanic and Atmospheric Administration (NOAA) operates the region containing the United States, which reaches across the Atlantic and Pacific Oceans as well as parts of Central and South America.
NOAA notifies organizations that coordinate search and rescue efforts of a 406 MHz distress beacon’s activation and location. Within the U.S., the U.S. Air Force responds to land-based emergencies and the U.S. Coast Guard responds to water-based emergencies. Local public service organizations like police and fire departments, as well as civilian volunteers, serve as first responders.
Here at NASA, we research, design and test search and rescue instruments and beacons to refine the existing network. Aeronautical beacon tests took place at our Langley Research Center in 2015. Using a 240-foot-high structure originally used to test Apollo spacecraft, our Search and Rescue team crashed three planes to test the survivability of these beacons, developing guidelines for manufacturers and installation into aircraft.
In the future, first responders will rely on a new constellation of search and rescue instruments on GPS systems on satellites in medium-Earth orbit, not hundreds, but THOUSANDS of miles overhead. These new instruments will enable the search and rescue network to locate a distress signal more quickly than the current system and achieve accuracy an order of magnitude better, from a half mile to approximately 300 feet. Our Search and Rescue office is developing second-generation 406 MHz beacons that make full use of this new system.
We will also incorporate these second-generation beacons into the Orion Crew Survival System. The Advanced Next-Generation Emergency Locator (ANGEL) beacons will be attached to astronaut life preservers. After splashdown, if the Orion crew exits the capsule due to an emergency, these beacons will make sure we know the exact location of floating astronauts! Our Johnson Space Center is testing this technology for used in future human spaceflight and exploration missions.
If you’re the owner of an emergency beacon, remember that beacon registration is free, easy and required by law.
To register your beacon, visit: beaconregistration.noaa.gov
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Eagle Nebula
via reddit
NASA also uses symbols for specific projects within the agency. Each space shuttle crew designs a patch that represents what it will do during the mission. Some robotic probes sent to explore space have had mission patches. From the wing of the space shuttle to the top of the NASA homepage, the agency's official insignia is probably its best-known symbol.
The round red, white and blue insignia, nicknamed the "meatball," was designed by employee James Modarelli in 1959, NASA's second year. The design incorporates references to different aspects of the mission of the National Aeronautics and Space Administration. The round shape of the insignia represents a planet. The stars represent space. The red v-shaped vector represents aeronautics. The circular orbit around the agency's name represents space travel.
After it was introduced, the "meatball" was the most common symbol of NASA for 16 years, but in 1975 NASA decided to create a more "modern" logo. That logo, which consisted of the word "NASA" in a unique type style, was nicknamed the "worm." That logo was retired in 1992, and the classic meatball insignia has been the most common agency symbol since.
In addition to the insignia, NASA has another official symbol. If the meatball is the everyday face of NASA, the NASA seal is the dressed-up version. The NASA administrator uses the seal for formal purposes such as award presentations and ceremonies. Like the meatball insignia, the seal also includes planet, stars, orbit and vector elements
NASA also uses symbols for specific projects within the agency. Each space shuttle crew designed a patch that represents what they were going to do during the mission. Some robotic probes sent to explore space have had mission patches.
Image Credits: NASA
Orion Launch Abort System Motor Gets Fired-up About the Journey to Mars
Applause resounded from NASA and its partners as they watched Orion’s jettison motor generate 40,000 pounds of thrust in just a blink of an eye, preparing the spacecraft for its first integrated mission with the Space Launch System rocket.
Onlookers had just witnessed a 1.5-second jettison motor test firing at Aerojet Rocketdyne’s facility in Sacramento, California.
The Orion launch abort system (LAS) is designed to protect astronauts in the unlikely event there is an issue during launch by pulling the spacecraft away from the rocket during a mission. The jettison motor is activated during ascent to separate the launch abort system from the spacecraft after it is no longer needed during a mission.
“This test showed us that the jettison motor can quickly generate the amount of thrust needed to pull the LAS away during an Orion mission,” said Tim Larson, jettison motor principle engineer for Lockheed Martin who has been with the project since inception. “I’m very pleased with how the test went.”
The fifth firing
The jettison motor has now undergone five tests, including two test flights. Each test in the series builds upon each other, moving the nation forward on its journey to Mars.
The motor used for the fifth test was rebuilt from a previous test motor.
“We were able to recycle some of the parts from the second ground test and use it for this test,” said NASA LAS project manager Robert Decoursey. “We not only went green, but we also saved money.”
Inside and around the test motor were instruments that included strain gauges, accelerometers and pressure transducers, which feed engineers high-quality data that show whether the motor design is ready for upcoming flight tests and missions. This motor had more instruments and produced more data than any of the previous tests.
“There are many intricate details in the jettison motor design that are not obvious from the outside, and the consistent orchestration of those details are most important to obtain predictable performance,” said NASA LAS deputy project manager Deborah Crane. “Aerojet Rocketdyne has done an excellent job executing this test on schedule.”
The jettison motor bakery
Creating a jettison motor is like baking two big cakes and making enough batter for some leftover cupcakes, according to Tim Warner, NASA LAS business manager.
The jettison motor being tested in the photo above would be activated during ascent to separate the launch abort system from the spacecraft after it is no longer needed during a mission.Credits: Aerojet Rocketdyne
What’s most exciting for the team, besides the successful test, are the latest upgrades to their baking and mixing tools.
“We were using two mixing batches to make just one motor, but have recently upgraded to a larger mixing bowl, saving us time and money,” Decoursey said.
The new mixing bowl can hold up to 450 whopping gallons of cake batter, or in NASA terms, motor propellant.
The team mixes up the batter in this large mixing bowl and evenly splits the batter into two pots for a perfectly sculpted jettison motor.
Any leftover propellant is used to make small test motors. The smaller motors are used to check the propellant’s combustion capabilities before the motors are accepted for test or flight.
What’s next?
NASA and its partners are expected to perform the last flight test of the launch abort system in 2019 before they begin sending crew to deep space aboard Orion. During the final test, an uncrewed Orion capsule will launch from a modified Peacekeeper missile and demonstrate a successful abort under the highest aerodynamic loads it could experience during a mission.
The jettison motor will be used during Orion’s first integrated mission with SLS, known as Exploration Mission-1 (EM-1) in late 2018. The mission will be the second test flight for Orion, and the first for SLS. EM-1 will send Orion on a three-week journey approximately 40,000 miles beyond the moon. The test will demonstrate the integrated performance of the rocket and spacecraft before their second test flight together, Exploration Mission-2, which will carry crew.
The LAS is led out NASA’s Langley Research Center in Virginia in collaboration with NASA’s Marshall Space Flight Center in Alabama.
Sasha Ellis
NASA Langley Research Center
We need the biggest rocket stage ever built for the bold missions in deep space that NASA's Space Launch System rocket will give us the capability to achieve. This infographic sums up everything you need to know about the SLS core stage, the 212-foot-tall stage that serves as the backbone of the most powerful rocket in the world. The core stage includes the liquid hydrogen tank and liquid oxygen tank that hold 733,000 gallons of propellant to power the stage’s four RS-25 engines needed for liftoff and the journey to Mars.
Image Credit: NASA/MSFC
This is where they 3D print cool pieces that are needed for the ISS! They use cool carbon fiber materials to make the final product look smooth and flawless. They are also 3D printing that payload attachment fitting for the SLS Block 1B rocket!! I took a video of it actually printing so be on the lookout for that!
A new robotic arm for assembling spacecraft and exploration platforms in space flexed its muscle in a successful ground demonstration Jan. 19.
The device, called the Tension Actuated in Space MANipulator (TALISMAN) was tested in the Structures and Materials Test Laboratory at NASA’s Langley Research Center in Hampton, Virginia.
TALISMAN is just one component of the Commercial Infrastructure for Robotic Assembly and Servicing (CIRAS). In this demonstration, the team manipulated the newer, longer arm back and forth from folded to extended positions to demonstrate that it is fully operational and ready for more comprehensive testing.
“The demonstration we accomplished last week was the rough equivalent of what the Navy calls a “shakedown cruise,” said John Dorsey, NASA principal investigator for CIRAS.
The tests will get progressively more difficult over the coming months as more detailed tasks are demanded of the robots. Future tests include not only a series of demonstrations exercising TALISMAN’s ability to move and manipulate objects along a truss, but also a demonstration of the NASA Intelligent Jigging and Assembly Robot (NINJAR) and the Strut Assembly, Manufacturing, Utility & Robotic Aid (SAMURAI) building two truss bays from pieces.
CIRAS is a collaboration with industry partner Orbital ATK of Dulles, Virginia, aimed at developing a “toolbox” of capabilities for use in servicing, refueling, and ultimately the construction of assets on orbit.
Advanced in-space assembly technologies will provide a more cost-effective way to build spacecraft and future human exploration platforms in space, such as the tended spaceport between the Earth and the Moon the agency is looking to build that would serve as a gateway to deep space and the lunar surface.
One of the biggest benefits of in-space assembly is the ability to launch the necessary material and components in tightly packed envelopes, given rockets have limited capacity with strict requirements on the size and shape of pre-assembled items being launched into orbit.
“It’s the difference between taking your new bedroom suite home in a box from IKEA using your Honda Civic and hiring a large box truck to deliver the same thing that was fully assembled at a factory. Space is a premium on launches,” said Chuck Taylor, CIRAS project manager at Langley.
Being able to build and assemble components in space will allow more affordable and more frequent science and discovery missions in Earth orbit, across the solar system and beyond.
CIRAS is made up of several components. TALISMAN, the long-reach robotic arm technology, was developed and patented at Langley. TALISMAN moves SAMURAI, which is like the hand that brings truss segments to NINJAR, the robotic jig that holds the truss segments in place perfectly at 90 degrees while they are permanently fastened using electron beam welding to join together 3D printed titanium truss corner joints to titanium fittings at the strut ends. NINJAR was built almost entirely by interns in the lab. The students have done incredible things, Taylor said.
“We couldn't have done what we’ve done without them,” he added.
CIRAS is a part of the In-Space Robotic Manufacturing and Assembly project portfolio, managed by NASA’s Technology Demonstration Missions Program and sponsored by NASA’s Space Technology Mission Directorate.
The CIRAS team includes prime contractor Orbital ATK, supported by its wholly-owned subsidiary, Space Logistics, LLC; along with NASA Langley; NASA’s Glenn Research Center in Cleveland, Ohio; NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and the U.S. Naval Research Laboratory in Washington, D.C. If Orbital and Langley are successful in this spring’s series of demonstrations, they may be awarded a second contract to demonstrate these same capabilities on orbit.
To learn more about NASA's Space Technology Mission Directorate, visit:
https://www.nasa.gov/spacetech
Kristyn Damadeo NASA Langley Research Center
For the first time, Kepler measured the “shock breakout” of a star, the early flash from the shockwave of a dying red supergiant. The flash comes from a type II supernova, KSN 2011d. Read more