What doesn't tear you makes you doper
Substitutional defects ( 2 ) are point defects in which an impurity atom takes the place of a native atom within the crystal lattice. Semiconductors often intentionally add substitional defects through doping, such as adding boron or phosphorous to silicon to create an n- or p-type semiconductor, and certain alloys include extraneous elements to create substitional defects for solution hardening purposes.
Image source.
) ... i mean ;)
Hmm
Well, money is usually made from paper.
If money did grow on trees, we’d probably be more concerned about protecting the environment.
Image: Victor Habbick Visions/Science Photo Library
Traditional electronics are made from rigid and brittle materials. However, a new ‘self-healing’ electronic material allows a soft robot to recover its circuits after it is punctured, torn or even slashed with a razor blade.
Made from liquid metal droplets suspended in a flexible silicone elastomer, it is softer than skin and can stretch about twice its length before springing back to its original size.
Soft Robotics & Biologically Inspired Robotics at Carnegie Mellon University. Video: Mouser Electronics
‘The material around the damaged area automatically creates new conductive pathways, which bypass the damage and restore connectivity in the circuit,’ explains first author Carmel Majidi at Carnegie Mellon University in Pittsburgh, Pennsylvania. The rubbery material could be used for wearable computing, electronic textiles, soft field robots or inflatable extra-terrestrial housing.
‘There is a sweet spot for the size of the droplets,’ says Majidi. ‘We had to get the size not so small that they never rupture and form electronic connections, but not so big they would rupture even under light pressure.’
To read the full article, by Anthony King, in C&I, the members’ magazine for SCI, click here.
Apply independently produced drug to the burnt area
It`s gonna be Moon Soon season in India!! @neysastudies
The last time any country put boots or, rather, little metal feet, on the Moon was in 2013, when China landed its Yutu rover there. Before that, you’d have to look back to the 1970s to find anything built by Earthlings that camped out on the surface of the Moon.
But in 2018, India says it will be ready to join the ranks of the moon lander. The Indian Space Research Organisation (ISRO) is getting ready to land its very first lunar rover by the end of March 2018, as part of its Chandrayaan-2 mission.
Continue Reading.
Biggest Ferris wheel ever: the Jupiter Eye
follow @the-future-now
Printing microelectrode arrays on gelatin and other soft materials could pave the way for new medical diagnostics tools
Microelectrodes can be used for direct measurement of electrical signals in the brain or heart. These applications require soft materials, however. With existing methods, attaching electrodes to such materials poses significant challenges. A team at the Technical University of Munich (TUM) has now succeeded in printing electrodes directly onto several soft substrates.
Researchers from TUM and Forschungszentrum Jülich have successfully teamed up to perform inkjet printing onto a gummy bear. This might initially sound like scientists at play – but it may in fact point the way forward to major changes in medical diagnostics. For one thing, it was not an image or logo that Prof. Bernhard Wolfrum’s team deposited on the chewy candy, but rather a microelectrode array. These components, comprised of a large number of electrodes, can detect voltage changes resulting from activity in neurons or muscle cells, for example.
Second, gummy bears have a property that is important when using microelectrode arrays in living cells: they are soft. Microelectrode arrays have been around for a long time. In their original form, they consist of hard materials such as silicon. This results in several disadvantages when they come into contact with living cells. In the laboratory, their hardness affects the shape and organization of the cells, for example. And inside the body, the hard materials can trigger inflammation or the loss of organ functionalities.
Read more.
Opens up new possibilities in tissue engineering and soft robotics
Scientists from Nanyang Technological University, Singapore (NTU Singapore) and Carnegie Mellon University (CMU) have found a way to direct the growth of hydrogel, a jelly-like substance, to mimic plant or animal tissue structure and shapes.
The team’s findings, published in Proceedings of the National Academy of Sciences today, suggest new applications in areas such as tissue engineering and soft robotics where hydrogel is commonly used. The team has also filed a patent at CMU and NTU.
In nature, plant or animal tissues are formed as new biomass is added to existing structures. Their shape is the result of different parts of those tissues growing at different rates.
Mimicking this behaviour of biological tissues in nature, the research team comprising CMU scientists Changjin Huang, David Quinn, K. Jimmy Hsia and NTU President-designate Prof Subra Suresh, showed that through manipulation of oxygen concentration, one can pattern and control the growth rate of hydrogels to create the desired complex 3D shapes.
Read more.
Disabled? Most abled person!
follow @the-future-now
Flame Nebula in Orion - For more images of the cosmos Click Here