redplanet44 - Untitled

redplanet44

Untitled

103 posts

Latest Posts by redplanet44

redplanet44
5 years ago
Origami-inspired Materials Could Soften The Blow For Reusable Spacecraft

Origami-inspired materials could soften the blow for reusable spacecraft

Space vehicles like SpaceX’s Falcon 9 are designed to be reusable. But this means that, like Olympic gymnasts hoping for a gold medal, they have to stick their landings.

Landing is stressful on a rocket’s legs because they must handle the force from the impact with the landing pad. One way to combat this is to build legs out of materials that absorb some of the force and soften the blow.

University of Washington researchers have developed a novel solution to help reduce impact forces – for potential applications in spacecraft, cars and beyond. Inspired by the paper folding art of origami, the team created a paper model of a metamaterial that uses “folding creases” to soften impact forces and instead promote forces that relax stresses in the chain. The team published its results May 24 in Science Advances.

“If you were wearing a football helmet made of this material and something hit the helmet, you’d never feel that hit on your head. By the time the energy reaches you, it’s no longer pushing. It’s pulling,” said corresponding author Jinkyu Yang, a UW associate professor of aeronautics and astronautics.

Read more.

redplanet44
6 years ago

Studying DNA Breaks to Protect Future Space Travelers

Genes in Space logo. May 9, 2019 Earth’s atmosphere shields life on the ground from cosmic radiation that can damage DNA.  Astronauts in space have no such protection, and that puts them at risk. An investigation on the International Space Station examines DNA damage and repair in space in order to help protect the long-term health of space travelers. An organism carries all of its genetic information in its deoxyribonucleic acid or DNA. This blueprint for life takes the form of specific sequences of nitrogen bases: adenine, cytosine, guanine, and thymine, represented by the letters A, C, G and T.

Image above: The miniPCR device, used to make multiple copies of a particular strand of DNA in space. Image Credit: NASA. One type of DNA damage is double strand breaks, essentially a cut across both strands of DNA. Cells repair these breaks almost immediately, but can make errors, inserting or deleting DNA bases and creating mutations. These mutations may result in diseases such as cancer. Genes in Space-6 looks at the specific mechanism cells use to repair double strand breaks in space. The investigation takes cells of the yeast Saccharomyces cerevisiae to the space station, where astronauts cause a specific type of damage to its DNA using a genome editing tool known as CRISPR-Cas9. The astronauts allow the cells to repair this damage, then make many copies of the repaired section using a process called polymerase chain reaction (PCR) with an onboard device, the miniPCR. Another device, MinION, is then used to sequence the repaired section of DNA in those copies. Sequencing shows the exact order of the bases, revealing whether the repair restored the DNA to its original order or made errors. The investigation represents a number of firsts, including the first use of CRISPR-Cas9 genetic editing on the space station and the first time scientists evaluate the entire damage and repair process in space.

Image above: The student team that developed the Genes in Space 6 experiment. From left to right: David Li, Aarthi Vijayakumar, Michelle Sung, and Rebecca Li. Image Credit: Boeing. “The damage actually happens on the space station and the analysis also happens in space,” said one of the investigators from miniPCR Bio, Emily Gleason. “We want to understand if DNA repair methods are different in space than on Earth.” This investigation is part of the Genes in Space program. Founded by miniPCR and Boeing, the program challenges students to come up with DNA experiments in space that involve using the PCR technique and the miniPCR device on the station. Students submit ideas online, and the program chooses five finalists. These finalists are paired with a mentor scientist who helps them turn their idea into a presentation for the ISS Research and Development Conference. A panel of judges selects one proposed experiment to fly to the space station. “We want to inspire students to think like scientists and give them the opportunity for an authentic science experience that doesn’t cost them anything,” says Gleason. More than 550 student teams submitted ideas last year. The Genes in Space-6 investigation student team includes Michelle Sung, Rebecca Li, and Aarthi Vijayakumar at Mounds View High School in Arden Hills, Minnesota, and David Li, now a freshman at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. Their mentor is Kutay Deniz Atabay at MIT.

Image above: The Genes in Space 6 student team. Image Credit: GENES IN SPACE. Other investigators include Sarah E. Stahl and Sarah Wallace with NASA’s Johnson Space Center Microbiology group in Houston; G. Guy Bushkin, Whitehead Institute for Biomedical Research, Cambridge; Melissa L. Boyer, Teresa K. Tan, Kevin D. Foley, and D. Scott Copeland at Boeing; and Ezequiel Alvarez Saavedra, Gleason, and Sebastian Kraves at Amplyus LLC, in Cambridge. Amplyus is the parent company of miniPCR Bio. “One thing the investigation will tell us is yes, we can do these things in space,” said Gleason. “We expect to see the yeast use the error-free method of repair more frequently, which is what we see on Earth; but we don’t know for sure whether it will be the same or not. Ultimately, we can use this knowledge to help protect astronauts from DNA damage caused by cosmic radiation on long voyages and to enable genome editing in space.” The procedures used in this investigation may have applications for protecting people from radiation and other hazards in remote and harsh locations on Earth as well. Related links: Genes in Space-6: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7893 miniPCR: https://www.minipcr.com/ MinION: https://www.nasa.gov/mission_pages/station/research/news/biomolecule_sequencer Genes in Space program: https://www.genesinspace.org/ Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html Images (mentioned), Text, Credits: NASA/Michael Johnson/JSC/International Space Station Program Science Office/Melissa Gaskill. Greetings, Orbiter.ch Full article

redplanet44
6 years ago
This Brainless Slime Learns And Remembers by Slurping Stuff From Its Environment
Slime mould might easily be one of the strangest life forms on our planet. They are neither plants, animals, nor fungi, but various species of complex, single-celled amoebas of the protist kingdom. Sometimes they form colonies able to grow, move, and

Even without a nervous system, they are able to learn about substances they encounter, retaining that knowledge and even communicating it to other slime moulds.

redplanet44
6 years ago

Types as Ya Boy Bill Nye quotes

ESFJ:

Types As Ya Boy Bill Nye Quotes

ESFP:

Types As Ya Boy Bill Nye Quotes

ESTJ:

Types As Ya Boy Bill Nye Quotes

ESTP:

Types As Ya Boy Bill Nye Quotes

ENFJ:

Types As Ya Boy Bill Nye Quotes

ENFP:

Types As Ya Boy Bill Nye Quotes

ENTJ:

Types As Ya Boy Bill Nye Quotes

ENTP:

Types As Ya Boy Bill Nye Quotes

ISFJ:

Types As Ya Boy Bill Nye Quotes

ISFP:

Types As Ya Boy Bill Nye Quotes

ISTJ:

Types As Ya Boy Bill Nye Quotes

ISTP:

Types As Ya Boy Bill Nye Quotes

INFJ:

Types As Ya Boy Bill Nye Quotes

INFP:

Types As Ya Boy Bill Nye Quotes

INTJ: 

Types As Ya Boy Bill Nye Quotes

INTP:

Types As Ya Boy Bill Nye Quotes
redplanet44
6 years ago

Types as Ya Boy Bill Nye quotes

ESFJ:

Types As Ya Boy Bill Nye Quotes

ESFP:

Types As Ya Boy Bill Nye Quotes

ESTJ:

Types As Ya Boy Bill Nye Quotes

ESTP:

Types As Ya Boy Bill Nye Quotes

ENFJ:

Types As Ya Boy Bill Nye Quotes

ENFP:

Types As Ya Boy Bill Nye Quotes

ENTJ:

Types As Ya Boy Bill Nye Quotes

ENTP:

Types As Ya Boy Bill Nye Quotes

ISFJ:

Types As Ya Boy Bill Nye Quotes

ISFP:

Types As Ya Boy Bill Nye Quotes

ISTJ:

Types As Ya Boy Bill Nye Quotes

ISTP:

Types As Ya Boy Bill Nye Quotes

INFJ:

Types As Ya Boy Bill Nye Quotes

INFP:

Types As Ya Boy Bill Nye Quotes

INTJ: 

Types As Ya Boy Bill Nye Quotes

INTP:

Types As Ya Boy Bill Nye Quotes
redplanet44
6 years ago
Fish-Inspired Material Changes Color Using Nanocolumns

Fish-Inspired Material Changes Color Using Nanocolumns

Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.

“Neon tetras can control their brightly colored stripes by changing the angle of tiny platelets in their skin,” says Chih-Hao Chang, an associate professor of mechanical and aerospace engineering at North Carolina State University and corresponding author of a paper on the work.

“For this proof-of-concept study, we’ve created a material that demonstrates a similar ability,” says Zhiren Luo, a Ph.D. student at NC State and first author of the paper. “Specifically, we’ve shown that we can shift the material’s color by using a magnetic field to change the orientation of an array of nanocolumns.”

The color-changing material has four layers. A silicon substrate is coated with a polymer that has been embedded with iron oxide nanoparticles. The polymer incorporates a regular array of micron-wide pedestals, making the polymer layer resemble a LEGO® brick. The middle layer is an aqueous solution containing free-floating iron oxide nanoparticles. This solution is held in place by a transparent polymer cover.

Read more.

redplanet44
6 years ago

@neysastudies

Toxic ‘zombie’ Cells Seen For 1st Time In Alzheimer’s

Toxic ‘zombie’ cells seen for 1st time in Alzheimer’s

A type of cellular stress known to be involved in cancer and aging has now been implicated, for the first time, in Alzheimer’s disease. UT Health San Antonio faculty researchers reported the discovery in the journal Aging Cell.

The team found that the stress, called cellular senescence, is associated with harmful tau protein tangles that are a hallmark of 20 human brain diseases, including Alzheimer’s and traumatic brain injury. The researchers identified senescent cells in postmortem brain tissue from Alzheimer’s patients and then found them in postmortem tissue from another brain disease, progressive supranuclear palsy.

Cellular senescence allows the stressed cell to survive, but the cell may become like a zombie, functioning abnormally and secreting substances that kill cells around it. “When cells enter this stage, they change their genetic programming and become pro-inflammatory and toxic,” said study senior author Miranda E. Orr, Ph.D., VA research health scientist at the South Texas Veterans Health Care System, faculty member of the Sam and Ann Barshop Institute for Longevity and Aging Studies, and instructor of pharmacology at UT Health San Antonio. “Their existence means the death of surrounding tissue.”

Improvements in brain structure and function

The team confirmed the discovery in four types of mice that model Alzheimer’s disease. The researchers then used a combination of drugs to clear senescent cells from the brains of middle-aged Alzheimer’s mice. Such drugs are called senolytics. The drugs used by the San Antonio researchers are dasatinib, a chemotherapy medication that is U.S. Food and Drug Administration-approved to treat leukemia, and quercetin, a natural flavonoid compound found in fruits, vegetables and some beverages such as tea.

After three months of treatment, the findings were exciting. “The mice were 20 months old and had advanced brain disease when we started the therapy,” Dr. Orr said. “After clearing the senescent cells, we saw improvements in brain structure and function. This was observed on brain MRI studies (magnetic resonance imaging) and postmortem histology studies of cell structure. The treatment seems to have stopped the disease in its tracks.”

“The fact we were able to treat very old mice and see improvement gives us hope that this treatment might work in human patients even after they exhibit symptoms of a brain disease,” said Nicolas Musi, M.D., study first author, who is Professor of Medicine and Director of the Sam and Ann Barshop Institute at UT Health San Antonio. He also directs the VA-sponsored Geriatric Research, Education and Clinical Center (GRECC) in the South Texas Veterans Health Care System.

Typically, in testing an intervention in Alzheimer’s mice, the therapy only works if mice are treated before the disease starts, Dr. Musi said.

Tau protein accumulation is responsible

In Alzheimer’s disease, patient brain tissue accumulates tau protein tangles as well as another protein deposit called amyloid beta plaques. The team found that tau accumulation was responsible for cell senescence. Researchers compared Alzheimer’s mice that had only tau tangles with mice that had only amyloid beta plaques. Senescence was identified only in the mice with tau tangles.

In other studies to confirm this, reducing tau genetically also reduced senescence. The reverse also held true. Increasing tau genetically increased senescence.

Importantly, the drug combination reduced not only cell senescence but also tau tangles in the Alzheimer’s mice. This is a drug treatment that does not specifically target tau, but it effectively reduced the tangle pathology, Dr. Orr said.

“When we looked at their brains three months later, we found that the brains had deteriorated less than mice that received placebo control treatment,” she said. “We don’t think brain cells actually grew back, but there was less loss of neurons, less brain ventricle enlargement, improved cerebral blood flow and a decrease in the tau tangles. These drugs were able to clear the tau pathology.”

Potentially a therapy to be tested in humans

“This is the first of what we anticipate will be many studies to better understand this process,” Dr. Musi said. “Because these drugs are approved for other uses in humans, we think a logical next step would be to start pilot studies in people.”

The drugs specifically target—and therefore only kill—the senescent cells. Because the drugs have a short half-life, they are cleared quickly by the body and no side effects were observed.

Dasatinib is an oral medication. The mice were treated with the combination every other week. “So in the three months of treatment, they only received the drug six times,” Dr. Orr said. “The drug goes in, does its job and is cleared. Senescent cells come back with time, but we expect that it would be possible to take the drug again and be cleared out again. That’s a huge benefit—it wouldn’t be a drug that people would have to take every day.”

Dosage and frequency in humans would need to be determined in clinical trials, she said.

Next, the researchers will study whether cell senescence is present in traumatic brain injury. TBI is a brain injury that develops tau protein accumulation and is a significant cause of disability in both military and non-military settings, Dr. Orr said.

redplanet44
6 years ago

Bio-Inspired Material Interacts with Surrounding Tissue to Promote Healing.

Bio-Inspired Material Interacts With Surrounding Tissue To Promote Healing.

A research team from Imperial College London, led by Dr Ben Almquist, has developed a new molecule based on so-called traction force-activated payloads (TrAPs) which allow materials to talk to the body‘s natural repair systems and thereby activate healing processes. “Creatures from sea sponges to…

Read more

redplanet44
6 years ago
Carrying And Releasing Nanoscale Cargo With ‘nanowrappers’

Carrying and releasing nanoscale cargo with ‘nanowrappers’

This holiday season, scientists at the Center for Functional Nanomaterials (CFN) – a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory – have wrapped a box of a different kind. Using a one-step chemical synthesis method, they engineered hollow metallic nanosized boxes with cube-shaped pores at the corners and demonstrated how these “nanowrappers” can be used to carry and release DNA-coated nanoparticles in a controlled way. The research is reported in a paper published on Dec. 12 in ACS Central Science, a journal of the American Chemical Society (ACS).

“Imagine you have a box but you can only use the outside and not the inside,” said co-author Oleg Gang, leader of the CFN Soft and Bio Nanomaterials Group. “This is how we’ve been dealing with nanoparticles. Most nanoparticle assembly or synthesis methods produce solid nanostructures. We need methods to engineer the internal space of these structures.”

“Compared to their solid counterparts, hollow nanostructures have different optical and chemical properties that we would like to use for biomedical, sensing, and catalytic applications,” added corresponding author Fang Lu, a scientist in Gang’s group. “In addition, we can introduce surface openings in the hollow structures where materials such as drugs, biological molecules, and even nanoparticles can enter and exit, depending on the surrounding environment.”

Read more.

redplanet44
6 years ago
Skin Gel Allows Wounds To Heal Without Leaving A Scar

Skin gel allows wounds to heal without leaving a scar

A team of researchers at Huazhong University of Science and Technology has developed a silk protein-based gel that they claim allows for skin healing without scarring. In their paper published in the journal Biomaterials Science, the group describes their gel and how well it works.

Scarring due to a skin injury is not just unsightly—for many, it can also be a painful reminder of a wound. For these reasons, scientists have sought a way to heal wounds without scarring. In this new effort, the team in China claims to have found such a solution—a sericin hydrogel.

The gel used by the researchers was based on a silk protein—the researchers extracted sericin from silk fibers and then used a UV light and a photoinitiator to cross-link the protein chains. The result was a gel that adhered well to cells and did not trigger much of an immune response. The researchers note that it also has adjustable mechanical properties. They explain that the gel allows for scar-free healing by inhibiting inflammation and by promoting the development of new blood vessels. It was also found to regulate TGF-β growth factors, which resulted in stem cells being routed to the injury site allowing new skin to develop, rather than scar tissue.

Read more.

redplanet44
6 years ago
Origami, 3D Printing Merge To Make Complex Structures In One Shot

Origami, 3D printing merge to make complex structures in one shot

By merging the ancient art of origami with 21st century technology, researchers have created a one-step approach to fabricating complex origami structures whose light weight, expandability, and strength could have applications in everything from biomedical devices to equipment used in space exploration. Until now, making such structures has involved multiple steps, more than one material, and assembly from smaller parts.

“What we have here is the proof of concept of an integrated system for manufacturing complex origami. It has tremendous potential applications,” said Glaucio H. Paulino, a professor at the School of Civil and Environmental Engineering at the Georgia Institute of Technology and a leader in the growing field of origami engineering, or using the principles of origami, mathematics and geometry to make useful things. Last fall Georgia Tech became the first university in the country to offer a course on origami engineering, which Paulino taught.

Read more.

redplanet44
6 years ago
Breakthrough In Blending Metals—precise Control Of Multimetallic One-nanometer Cluster Formation Achieved

Breakthrough in blending metals—precise control of multimetallic one-nanometer cluster formation achieved

Researchers in Japan have found a way to create innovative materials by blending metals with precision control. Their approach, based on a concept called atom hybridization, opens up an unexplored area of chemistry that could lead to the development of advanced functional materials.

Multimetallic clusters—typically composed of three or more metals—are garnering attention as they exhibit properties that cannot be attained by single-metal materials. If a variety of metal elements are freely blended, it is expected that as-yet-unknown substances are discovered and highly-functional materials are developed. So far, no one had reported the multimetallic clusters blended with more than four metal elements so far because of unfavorable separation of different metals. One idea to overcome this difficulty is miniaturization of cluster sizes to one-nanometer scale, which forces the different metals to be blended in a small space. However, there was no way to realize this idea.

Read more.

redplanet44
6 years ago
Gut bug enzyme turns blood into type-O
Gut bug enzyme turns blood into type-O Scientists believe they have found a reliable way to transform donor blood into the universal type needed for safe, emergency blood transfusions. The discovery is enzymes from gut bacteria that can efficiently turn type-A human blood into type-O. Type-O blood is special because it can be donated to anyone without the risk of a bad mismatch reaction. The researchers, from the University of British Columbia, say clinical trials of the treatment could begin soon.

Thats amazing news :O

redplanet44
6 years ago

A battery that eats CO2

image

By Khai Trung Le

A new type of battery developed by researchers at MIT could be made partly from carbon dioxide captured from power plants. Rather than attempting to convert carbon dioxide to specialized chemicals using metal catalysts, which is currently highly challenging, this battery could continuously convert carbon dioxide into a solid mineral carbonate as it discharges.

The battery is made from lithium metal, carbon, and an electrolyte that the researchers designed. While still based on early-stage research and far from commercial deployment, the new battery formulation could open up new avenues for tailoring electrochemical carbon dioxide conversion reactions, which may ultimately help reduce the emission of the greenhouse gas to the atmosphere.

Currently, power plants equipped with carbon capture systems generally use up to 30 percent of the electricity they generate just to power the capture, release, and storage of carbon dioxide. Anything that can reduce the cost of that capture process, or that can result in an end product that has value, could significantly change the economics of such systems, the researchers say.

Betar Gallant, Assistant Professor of Mechanical Engineering at MIT, said, ‘Carbon dioxide is not very reactive. Trying to find new reaction pathways is important.’Ideally, the gas would undergo reactions that produce something worthwhile, such as a useful chemical or a fuel. However, efforts at electrochemical conversion, usually conducted in water, remain hindered by high energy inputs and poor selectivity of the chemicals produced.

The team looked into whether carbon-dioxide-capture chemistry could be put to use to make carbon-dioxide-loaded electrolytes — one of the three essential parts of a battery — where the captured gas could then be used during the discharge of the battery to provide a power output.

The team developed a new approach that could potentially be used right in the power plant waste stream to make material for one of the main components of a battery. By incorporating the gas in a liquid state, however, Gallant and her co-workers found a way to achieve electrochemical carbon dioxide conversion using only a carbon electrode. The key is to preactivate the carbon dioxide by incorporating it into an amine solution.

‘What we’ve shown for the first time is that this technique activates the carbon dioxide for more facile electrochemistry,’ Gallant says. ‘These two chemistries — aqueous amines and nonaqueous battery electrolytes — are not normally used together, but we found that their combination imparts new and interesting behaviors that can increase the discharge voltage and allow for sustained conversion of carbon dioxide.’

The battery is made from lithium metal, carbon, and an electrolyte that the researchers designed. While still based on early-stage research and far from commercial deployment, the new battery formulation could open up new avenues for tailoring electrochemical carbon dioxide conversion reactions, which may ultimately help reduce the emission of the greenhouse gas to the atmosphere.

redplanet44
6 years ago

““One of the holy grails of biomaterials research has been working out a way to get skin to grow onto and attach to metals and plastics without the risk of infection. It looks like this design and technique may have solved the problem,” says Dr Stynes, who is researching his PhD at the University of Melbourne. “It could pave the way for fully implantable robotics, prosthetics, catheters, intravenous lines, and the reconstruction of surgical defects with artificial materials.” Professor Richard Page, Director of Orthopaedics and the Centre of Orthopaedic Research and Education at Barwon Health and Deakin University, said the ability of the scaffold to make the skin think it was growing on other skin is potentially a major finding.”

— Breaking the Skin Barrier Can Lead to Breakthroughs in Robotics to Human Interface

redplanet44
6 years ago

Hear the Haunting "Music" Detected Between Saturn and Enceladus | @curiositydotcom


Tags
redplanet44
6 years ago

Researchers develop ‘self-healing’ robotics material

Researchers Develop ‘self-healing’ Robotics Material

Image: Victor Habbick Visions/Science Photo Library

Traditional electronics are made from rigid and brittle materials. However, a new ‘self-healing’ electronic material allows a soft robot to recover its circuits after it is punctured, torn or even slashed with a razor blade.

Made from liquid metal droplets suspended in a flexible silicone elastomer, it is softer than skin and can stretch about twice its length before springing back to its original size.

Soft Robotics & Biologically Inspired Robotics at Carnegie Mellon University. Video: Mouser Electronics 

‘The material around the damaged area automatically creates new conductive pathways, which bypass the damage and restore connectivity in the circuit,’ explains first author Carmel Majidi at Carnegie Mellon University in Pittsburgh, Pennsylvania. The rubbery material could be used for wearable computing, electronic textiles, soft field robots or inflatable extra-terrestrial housing.

‘There is a sweet spot for the size of the droplets,’ says Majidi. ‘We had to get the size not so small that they never rupture and form electronic connections, but not so big they would rupture even under light pressure.’

To read the full article, by Anthony King, in C&I, the members’ magazine for SCI, click here. 

redplanet44
6 years ago
Using 3D Printers In Healthcare
Here is a list of several benefits to using 3D printers in the healthcare sector. Click here to read the article. Source: www.scitecheuropa.eu Phot
redplanet44
6 years ago
Gene discovery unlocks mysteries to our immunity
"It's exciting to consider that C6 has existed for more than 500 million years, preserved and passed down from simple organisms all the way to humans. But only now are we gaining insights into its importance."

Australia’s national science agency CSIRO has identified a new gene that plays a critical role in regulating the body’s immune response to infection and disease.

The discovery could lead to the development of new treatments for influenza, arthritis and even cancer.

The gene, called C6orf106 or “C6”, controls the production of proteins involved in infectious diseases, cancer and diabetes. The gene has existed for 500 million years, but its potential is only now understood.

Continue Reading.

redplanet44
6 years ago

A woman in Nevada dies from a bacterial infection that was resistant to 26 different antibiotics. A U.K. patient contracts a case of multidrug-resistant gonorrhea never seen before. A typhoid superbug kills hundreds in Pakistan. These stories from recent years — and many others — raise fears about the possibility of a post-antibiotic world.

The development of antibiotics in the early 20th century was one of the greatest leaps forward of modern medicine. Suddenly, common illnesses like pneumonia, strep throat and gonorrhea were no longer potential death sentences.

But even in the infancy of antibiotics, it was clear that their misuse and overuse could lead to antibiotic resistance and eventually create untreatable superbugs.

In this video, we explain how antibiotic resistance happens — and what we can do to avoid living in a post-antibiotic world.

Video: NPR

redplanet44
6 years ago
Scientists Print Sensors On Gummi Candy

Scientists print sensors on gummi candy

Printing microelectrode arrays on gelatin and other soft materials could pave the way for new medical diagnostics tools

Microelectrodes can be used for direct measurement of electrical signals in the brain or heart. These applications require soft materials, however. With existing methods, attaching electrodes to such materials poses significant challenges. A team at the Technical University of Munich (TUM) has now succeeded in printing electrodes directly onto several soft substrates.

Researchers from TUM and Forschungszentrum Jülich have successfully teamed up to perform inkjet printing onto a gummy bear. This might initially sound like scientists at play – but it may in fact point the way forward to major changes in medical diagnostics. For one thing, it was not an image or logo that Prof. Bernhard Wolfrum’s team deposited on the chewy candy, but rather a microelectrode array. These components, comprised of a large number of electrodes, can detect voltage changes resulting from activity in neurons or muscle cells, for example.

Second, gummy bears have a property that is important when using microelectrode arrays in living cells: they are soft. Microelectrode arrays have been around for a long time. In their original form, they consist of hard materials such as silicon. This results in several disadvantages when they come into contact with living cells. In the laboratory, their hardness affects the shape and organization of the cells, for example. And inside the body, the hard materials can trigger inflammation or the loss of organ functionalities.

Read more.

redplanet44
6 years ago

Re-generatively cooled RL10 Thrust Chamber Assembly test validates 3D printing process

West Palm Beach FL (SPX) Jun 18, 2018 Aerojet Rocketdyne recently achieved a significant milestone by successfully completing a series of hot-fire tests of an advanced, next-generation RL10 engine thrust chamber design that was built almost entirely using additive manufacturing; commonly known as 3-D printing. “This recent series of hot-fire tests conducted under our RL10C-X development program demonstrated the large-scale add Full article

redplanet44
6 years ago
AI-based Method Could Speed Development Of Specialized Nanoparticles

AI-based method could speed development of specialized nanoparticles

A new technique developed by MIT physicists could someday provide a way to custom-design multilayered nanoparticles with desired properties, potentially for use in displays, cloaking systems, or biomedical devices. It may also help physicists tackle a variety of thorny research problems, in ways that could in some cases be orders of magnitude faster than existing methods.

The innovation uses computational neural networks, a form of artificial intelligence, to “learn” how a nanoparticle’s structure affects its behavior, in this case the way it scatters different colors of light, based on thousands of training examples. Then, having learned the relationship, the program can essentially be run backward to design a particle with a desired set of light-scattering properties – a process called inverse design.

The findings are being reported in the journal Science Advances, in a paper by MIT senior John Peurifoy, research affiliate Yichen Shen, graduate student Li Jing, professor of physics Marin Soljacic, and five others.

Read more.

redplanet44
6 years ago
3D Printing Brain Models Before Surgery
These very detailed 3D printed brain models can make sure that surgeons have a better understanding of a patients brain before starting surgery. Click
redplanet44
6 years ago

Self-healing material a breakthrough for bio-inspired robotics

Many natural organisms have the ability to repair themselves. Now, manufactured machines will be able to mimic this property. In findings published this week in Nature Materials, researchers at Carnegie Mellon University have created a self-healing material that spontaneously repairs itself under extreme mechanical damage.

Self-healing Material A Breakthrough For Bio-inspired Robotics

This soft-matter composite material is composed of liquid metal droplets suspended in a soft elastomer. When damaged, the droplets rupture to form new connections with neighboring droplets and reroute electrical signals without interruption. Circuits produced with conductive traces of this material remain fully and continuously operational when severed, punctured, or had material removed.

Keep reading

redplanet44
6 years ago
Moon Dust Could Give Astronauts Permanent DNA Damage, Study finds

Moon dust could give astronauts permanent DNA damage, study finds

Moon dust clings to clothing and poses serious health risks to astronauts, a new study finds. Credit: NASA

redplanet44
6 years ago
NASA Eyes Versatile Carbon-nanotube Technology For Spaceflight Applications

NASA eyes versatile carbon-nanotube technology for spaceflight applications

An ultra-dark coating comprised of nearly invisible shag rug-like strands made of pure carbon is proving to be highly versatile for all types of spaceflight applications.

In the most recent application of the carbon-nanotube coating, optical engineer John Hagopian, a contractor at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and Goddard scientist Lucy Lim are growing an array of miniscule, button-shaped bumps of multi-walled nanotubes on a silicon wafer.

The dots, which measure only 100 microns in diameter—roughly the size of a human hair—would serve as the “ammunition” source for a mini-electron probe. This type of instrument analyzes the chemical properties of rocks and soil on airless bodies, like the Moon or an asteroid.

Although the probe is still early in its technology development, it’s showing promise, said Lim, who is using funding from NASA’s Planetary Instrument Concepts for the Advancement of Solar System Observations Program, better known as PICASSO, to advance the concept.

Read more.

redplanet44
7 years ago
Polymer Researchers Discover Path To Sustainable And Biodegradable Polyesters

Polymer researchers discover path to sustainable and biodegradable polyesters

There’s a good chance you’ve touched something made out of the polyolefin polymer today. It’s often used in polyethylene products like plastic bags or polypropylene products like diapers.

As useful as polyolefins are in society, they continue to multiply as trash in the environment. Scientists estimate plastic bags, for example, will take centuries to degrade.

But now, researchers at Virginia Tech have synthesized a biodegradable alternative to polyolefins using a new catalyst and the polyester polymer, and this breakthrough could eventually have a profound impact on sustainability efforts.

Rong Tong, assistant professor in the Department of Chemical Engineering and affiliated faculty member of Macromolecules Innovation Institute (MII), led the team of researchers, whose findings were recently published in the journal Nature Communications.

One of the largest challenges in polymer chemistry is controlling the tacticity or the stereochemistry of the polymer. When multiplying monomer subunits into the macromolecular chain, it’s difficult for scientists to replicate a consistent arrangement of side-chain functional groups stemming off the main polymer chain. These side-chain functional groups greatly affect a polymer’s physical and chemical properties, such as melting temperature or glass-transition temperature, and regular stereochemistry leads to better properties.

Read more.

Explore Tumblr Blog
Search Through Tumblr Tags