““One of the holy grails of biomaterials research has been working out a way to get skin to grow onto and attach to metals and plastics without the risk of infection. It looks like this design and technique may have solved the problem,” says Dr Stynes, who is researching his PhD at the University of Melbourne. “It could pave the way for fully implantable robotics, prosthetics, catheters, intravenous lines, and the reconstruction of surgical defects with artificial materials.” Professor Richard Page, Director of Orthopaedics and the Centre of Orthopaedic Research and Education at Barwon Health and Deakin University, said the ability of the scaffold to make the skin think it was growing on other skin is potentially a major finding.”
— Breaking the Skin Barrier Can Lead to Breakthroughs in Robotics to Human Interface
Imagine the lightsabers from this
Topological effects, such as those found in crystals whose surfaces conduct electricity while their bulk does not, have been an exciting topic of physics research in recent years and were the subject of the 2016 Nobel Prize in physics. Now, a team of researchers at MIT and elsewhere has found novel topological phenomena in a different class of systems — open systems, where energy or material can enter or be emitted, as opposed to closed systems with no such exchange with the outside.
This could open up some new realms of basic physics research, the team says, and might ultimately lead to new kinds of lasers and other technologies.
The results are being reported this week in the journal Science, in a paper by recent MIT graduate Hengyun “Harry” Zhou, MIT visiting scholar Chao Peng (a professor at Peking University), MIT graduate student Yoseob Yoon, recent MIT graduates Bo Zhen and Chia Wei Hsu, MIT Professor Marin Soljačić, the Francis Wright Davis Professor of Physics John Joannopoulos, the Haslam and Dewey Professor of Chemistry Keith Nelson, and the Lawrence C. and Sarah W. Biedenharn Career Development Assistant Professor Liang Fu.
Read more.
Opens up new possibilities in tissue engineering and soft robotics
Scientists from Nanyang Technological University, Singapore (NTU Singapore) and Carnegie Mellon University (CMU) have found a way to direct the growth of hydrogel, a jelly-like substance, to mimic plant or animal tissue structure and shapes.
The team’s findings, published in Proceedings of the National Academy of Sciences today, suggest new applications in areas such as tissue engineering and soft robotics where hydrogel is commonly used. The team has also filed a patent at CMU and NTU.
In nature, plant or animal tissues are formed as new biomass is added to existing structures. Their shape is the result of different parts of those tissues growing at different rates.
Mimicking this behaviour of biological tissues in nature, the research team comprising CMU scientists Changjin Huang, David Quinn, K. Jimmy Hsia and NTU President-designate Prof Subra Suresh, showed that through manipulation of oxygen concentration, one can pattern and control the growth rate of hydrogels to create the desired complex 3D shapes.
Read more.
CRISP(ie)R news than anything!
A powerful technique for editing genomes is now more precise. By tweaking an enzyme, researchers have reduced the error rate for the technique, known as CRISPR–Cas9 — in some cases to undetectable levels, they report on 6 January in Nature1.
Researchers use CRISPR–Cas9 to make precise changes to genomes that remove or edit a faulty gene. It has worked on nearly every creature on which they have tested it, including human embryos.
The technique relies on an enzyme called Cas9, that uses a ‘guide RNA’ molecule to home in on its target DNA. Cas9 cuts the DNA at that site, and the cell’s natural DNA repair machinery then takes over to mend the cut — deleting a short fragment of DNA or stitching in a new sequence in the process.
But the technology is not infallible: sometimes the Cas9 enzyme creates unwanted mutations. As CRISPR inches out of the laboratory and towards the clinic — with debates raging overwhether it should be deployed in embryos — researchers have pushed to reduce the error rate.
The latest study moves the field closer to that goal, says lead author Keith Joung, a pathologist at Massachusetts General Hospital in Boston. “This is a significant move forward,” he says. “We can very much reduce the probability of off-targets.”
Continue Reading.
scientists are saying we have about three years before all climate change effects are completely irreversible (meaning we are absolutely FUCKED). that’s just to avoid the worst of it (yes, all this shit with the fires and hurricanes is NOT the worst of it). so, i made a quick list of things people can do to start reducing their energy use and in turn, reducing greenhouse gas emissions and what not! -line/hang dry clothing - dryers use so much energy as it is and switching to the actually makes your clothing last so much longer! aka less energy spent on manufacturing and shipping clothing. -eat less meat - when i say this, it’s not specifically for the save the animals idea, but that is a huge bonus! factories that slaughter, process, and package meat use an insane amount of energy (another reason to switch to local as much as possible!!) -use less hot water - wash clothes in cold water, take shorter showers (or cold ones if you can handle that) -switch to reusable grocery bags -efficient light bulbs -carpool, walk, ride a bike, public transit -unplug electronics not in use - don’t leave things charging for too long. unplug your tv when it’s not being used. 40% of an item’s energy use is spent when it’s on standby!! -buy only what you need (look into minimalism guys, it’s real neat and saves money) -recycle -get a reusable water bottle instead of buying cases of plastic bottles - i bought one at walmart for 98 cents and i use it every single day. -plant your own garden or start a community garden! -composting -maintain air in car tires for better gas mileage -drive instead of taking airplanes -buy used items if they’re in good condition - why spend $20 on a shirt that you can find at goodwill for $1? same goes for books, CDs, and pretty much anything! save money AND cut down on energy use! -yall know that saying “reduce, reuse, recycle” -most importantly: TALK TO PEOPLE ABOUT THIS ISSUE - i mean your friends, your family, your local government, everyone!! these are all small things and it’s just a start but if we can get everyone in on habits like these, we could reduce the population’s carbon footprint by SO MUCH! we don’t wanna end up like that movie wall-e guys. this is serious!!
Journal reference: Cell Reports
Manual isolation of a single live mitochondria. The mitochondria can be seen under a microscope where a thin glass tube can be used to isolate the mitochondria from the dendrite region of the mouse neuron. Credit: Jacqueline Morris and Jaehee Lee, Perelman School of Medicine, University of Pennsylvania
Disabled? Most abled person!
follow @the-future-now
Researchers at Dartmouth College have developed a smart ink that turns 3D-printed structures into objects that can change shape and color. The innovation promises to add even more functionality to 3D printing and could pave the way to a new generation of printed material.
The advancement in the area of form-changing intelligent printing - also known as 4D printing - provides a low-cost alternative to printing precision parts for uses in areas ranging from biomedicine to the energy industry.
“This technique gives life to 3D-printed objects,” said Chenfeng Ke, an assistant professor of chemistry at Dartmouth. “While many 3D-printed structures are just shapes that don’t reflect the molecular properties of the material, these inks bring functional molecules to the 3D printing world. We can now print smart objects for a variety of uses.”
Many 3D printing protocols rely on photo-curing resins and result in hard plastic objects with rigid, but random molecular architectures. The new process allows designers to retain specific molecular alignments and functions in a material and converts those structures for use in 3D printing.
Read more.