Thats amazing news :O
Biomimicry
Nature inspires innovation. An international team lead by researchers at Technion – Israel Institute of Technology, together with ESRF -the European Synchrotron, Grenoble, France- scientists, have discovered how a brittle star can create material like tempered glass underwater. The findings are published in Science and may open new bio-inspired routes for toughening brittle ceramics in various applications that span from optical lenses to automotive turbochargers and even biomaterial implants.
A beautiful, brainless brittle star that lives in coral reefs has the clue to super tough glass. Hundreds of focal lenses are located on the arms of this creature, which is an echinoderm called Ophiocoma wendtii. These lenses, made of chalk, are powerful and accurate, and the deciphering of their crystalline and nanoscale structure has occupied Boaz Pokroy and his team, from the Technion-Israel Institute of Technology, for the past three years. Thanks to research done on three ESRF beamlines, ID22, ID13 and ID16B, among other laboratories, they have figured out the unique protective mechanism of highly resistant lenses.
As an example, take tempered glass. It is produced by exerting compressive pressure on the glass which compresses it and leaves it more compact than in its natural state. Glass tempering is performed by rapidly heating and then rapidly cooling the material. In this process, the outside of the material cools more quickly than the inside and thereby compresses the inside. Ophiocoma wendtiilenses are created in the open sea, at room temperature, unlike tempered glass. “We have discovered a strategy for making brittle material much more durable under natural conditions. It is ‘crystal engineering’ and tempering without heating and quenching – a process that could be very useful in materials engineering,” explains Pokroy.
Read more.
@neysastudies
Toxic ‘zombie’ cells seen for 1st time in Alzheimer’s
A type of cellular stress known to be involved in cancer and aging has now been implicated, for the first time, in Alzheimer’s disease. UT Health San Antonio faculty researchers reported the discovery in the journal Aging Cell.
The team found that the stress, called cellular senescence, is associated with harmful tau protein tangles that are a hallmark of 20 human brain diseases, including Alzheimer’s and traumatic brain injury. The researchers identified senescent cells in postmortem brain tissue from Alzheimer’s patients and then found them in postmortem tissue from another brain disease, progressive supranuclear palsy.
Cellular senescence allows the stressed cell to survive, but the cell may become like a zombie, functioning abnormally and secreting substances that kill cells around it. “When cells enter this stage, they change their genetic programming and become pro-inflammatory and toxic,” said study senior author Miranda E. Orr, Ph.D., VA research health scientist at the South Texas Veterans Health Care System, faculty member of the Sam and Ann Barshop Institute for Longevity and Aging Studies, and instructor of pharmacology at UT Health San Antonio. “Their existence means the death of surrounding tissue.”
Improvements in brain structure and function
The team confirmed the discovery in four types of mice that model Alzheimer’s disease. The researchers then used a combination of drugs to clear senescent cells from the brains of middle-aged Alzheimer’s mice. Such drugs are called senolytics. The drugs used by the San Antonio researchers are dasatinib, a chemotherapy medication that is U.S. Food and Drug Administration-approved to treat leukemia, and quercetin, a natural flavonoid compound found in fruits, vegetables and some beverages such as tea.
After three months of treatment, the findings were exciting. “The mice were 20 months old and had advanced brain disease when we started the therapy,” Dr. Orr said. “After clearing the senescent cells, we saw improvements in brain structure and function. This was observed on brain MRI studies (magnetic resonance imaging) and postmortem histology studies of cell structure. The treatment seems to have stopped the disease in its tracks.”
“The fact we were able to treat very old mice and see improvement gives us hope that this treatment might work in human patients even after they exhibit symptoms of a brain disease,” said Nicolas Musi, M.D., study first author, who is Professor of Medicine and Director of the Sam and Ann Barshop Institute at UT Health San Antonio. He also directs the VA-sponsored Geriatric Research, Education and Clinical Center (GRECC) in the South Texas Veterans Health Care System.
Typically, in testing an intervention in Alzheimer’s mice, the therapy only works if mice are treated before the disease starts, Dr. Musi said.
Tau protein accumulation is responsible
In Alzheimer’s disease, patient brain tissue accumulates tau protein tangles as well as another protein deposit called amyloid beta plaques. The team found that tau accumulation was responsible for cell senescence. Researchers compared Alzheimer’s mice that had only tau tangles with mice that had only amyloid beta plaques. Senescence was identified only in the mice with tau tangles.
In other studies to confirm this, reducing tau genetically also reduced senescence. The reverse also held true. Increasing tau genetically increased senescence.
Importantly, the drug combination reduced not only cell senescence but also tau tangles in the Alzheimer’s mice. This is a drug treatment that does not specifically target tau, but it effectively reduced the tangle pathology, Dr. Orr said.
“When we looked at their brains three months later, we found that the brains had deteriorated less than mice that received placebo control treatment,” she said. “We don’t think brain cells actually grew back, but there was less loss of neurons, less brain ventricle enlargement, improved cerebral blood flow and a decrease in the tau tangles. These drugs were able to clear the tau pathology.”
Potentially a therapy to be tested in humans
“This is the first of what we anticipate will be many studies to better understand this process,” Dr. Musi said. “Because these drugs are approved for other uses in humans, we think a logical next step would be to start pilot studies in people.”
The drugs specifically target—and therefore only kill—the senescent cells. Because the drugs have a short half-life, they are cleared quickly by the body and no side effects were observed.
Dasatinib is an oral medication. The mice were treated with the combination every other week. “So in the three months of treatment, they only received the drug six times,” Dr. Orr said. “The drug goes in, does its job and is cleared. Senescent cells come back with time, but we expect that it would be possible to take the drug again and be cleared out again. That’s a huge benefit—it wouldn’t be a drug that people would have to take every day.”
Dosage and frequency in humans would need to be determined in clinical trials, she said.
Next, the researchers will study whether cell senescence is present in traumatic brain injury. TBI is a brain injury that develops tau protein accumulation and is a significant cause of disability in both military and non-military settings, Dr. Orr said.
It's nap time little martian
Today was Opportunity Rover’s 5,000 Martian Day! Yay! Just in case you don’t know Opportunity, here are a few little facts.
First, The opportunity Rover was launched on July 7th of 2003. It was lauched with another rover named Spirit. They landed on Mars in Janurary of 2004. Unfortunately Spirit stopped working in 2010 , but Opportunity is still alive and helping us understand Mars.
Initially Opportuinity was only supposed to be around for 90 Earth days, but instead it’s gotten tons of extensions and is still collecting data today.
Opportunity is run by a solar panel and is almost 5 feet tall. The solar panels hold enough energy for 14 hours, and the batteries help store energy for use at night. All of that helps to keep our little robot running. He currently holds the record for longest distance travelled “off-world.”
As of right now Opportunity is “hibernating” through the Martian winter and will wake up again in March (yay!) to help with more scientific discoveries.
Happy 5,000 Martian Day Opportunity! And thanks for everything you do <3
Metal Rover Model Kit
Opportunity Poster
It`s hunting season!
It’s been a hard month for space telescopes. First we learned that Kepler is running out of fuel, signaling the end of its second life as an exoplanet hunter. Then we got word that the much-anticipated James Webb Space Telescope faces yet another delay.
But there is some good news on the horizon for astronomers, astrophysicists, planetary geologists, and people who just like learning neat things about far-away worlds. It’s TESS—short for the Transiting Exoplanet Survey Satellite. If all goes well, the new telescope will launch on Monday evening aboard a Falcon 9 rocket. It’s a relatively small satellite, but researchers have giant hopes for what it might discover. It has the potential to identify thousands of new planets, hundreds of rocky worlds like Earth, and dozens of planets hanging out in their star’s habitable zone (where liquid water could exist on the surface), all within our own little corner of the galaxy.
Continue Reading.
ESFJ:
ESFP:
ESTJ:
ESTP:
ENFJ:
ENFP:
ENTJ:
ENTP:
ISFJ:
ISFP:
ISTJ:
ISTP:
INFJ:
INFP:
INTJ:
INTP:
Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.
“Neon tetras can control their brightly colored stripes by changing the angle of tiny platelets in their skin,” says Chih-Hao Chang, an associate professor of mechanical and aerospace engineering at North Carolina State University and corresponding author of a paper on the work.
“For this proof-of-concept study, we’ve created a material that demonstrates a similar ability,” says Zhiren Luo, a Ph.D. student at NC State and first author of the paper. “Specifically, we’ve shown that we can shift the material’s color by using a magnetic field to change the orientation of an array of nanocolumns.”
The color-changing material has four layers. A silicon substrate is coated with a polymer that has been embedded with iron oxide nanoparticles. The polymer incorporates a regular array of micron-wide pedestals, making the polymer layer resemble a LEGO® brick. The middle layer is an aqueous solution containing free-floating iron oxide nanoparticles. This solution is held in place by a transparent polymer cover.
Read more.
"Who is afraid of Super Woolf?"
There’s a good chance you’ve touched something made out of the polyolefin polymer today. It’s often used in polyethylene products like plastic bags or polypropylene products like diapers.
As useful as polyolefins are in society, they continue to multiply as trash in the environment. Scientists estimate plastic bags, for example, will take centuries to degrade.
But now, researchers at Virginia Tech have synthesized a biodegradable alternative to polyolefins using a new catalyst and the polyester polymer, and this breakthrough could eventually have a profound impact on sustainability efforts.
Rong Tong, assistant professor in the Department of Chemical Engineering and affiliated faculty member of Macromolecules Innovation Institute (MII), led the team of researchers, whose findings were recently published in the journal Nature Communications.
One of the largest challenges in polymer chemistry is controlling the tacticity or the stereochemistry of the polymer. When multiplying monomer subunits into the macromolecular chain, it’s difficult for scientists to replicate a consistent arrangement of side-chain functional groups stemming off the main polymer chain. These side-chain functional groups greatly affect a polymer’s physical and chemical properties, such as melting temperature or glass-transition temperature, and regular stereochemistry leads to better properties.
Read more.