Sansbook - * (It's A Joke Book.)

Time Is A Side Effect Of Quantum Entanglement
Time is an emergent phenomenon that is a side effect of quantum entanglement, say physicists. And they have the first experimental results to prove it.
Tags

More Posts from Sansbook and Others

9 years ago
Paranal Red Sprites
Paranal Red Sprites

Paranal red sprites

First imaged in 1989, red sprites are a ghostly phenomenon that occur at high altitudes above thunderstorms. Photographed here by ESO Photo Ambassador Petr Horálek, the unmistakable tendrils of multiple red sprites are spotted approximately 600 kilometres away from ESO’s Paranal Observatory above distant thunderclouds.

To capture multiple sprites in one image, two exposures were combined. The upper sprite occurred nearly 21 minutes before the lower one.

In the foreground sits a lone 1.8-metre Auxiliary Telescope, part of ESO’s Very Large Telescope (VLT).

Credit: P. Horálek/ESO


Tags
9 years ago

Associated Press

GENEVA — Physicists on the team that measured particles traveling faster than light said Friday they were as surprised as their skeptics about the results, which appear to violate the laws of nature as we know them.

Hundreds of scientists packed an auditorium at one of the world’s foremost laboratories on the Swiss-French border to hear how a subatomic particle, the neutrino, was found to have outrun light and confounded the theories of Albert Einstein.

“To our great surprise we found an anomaly,” said Antonio Ereditato, who participated in the experiment and speaks on behalf of the team.

An anomaly is a mild way of putting it.

Going faster than light is something that is just not supposed to happen, according to Einstein’s 1905 special theory of relativity. The speed of light — 186,282 miles per second (299,792 kilometers per second) — has long been considered a cosmic speed limit.

The team — a collaboration between France’s National Institute for Nuclear and Particle Physics Research and Italy’s Gran Sasso National Laboratory — fired a neutrino beam 454 miles (730 kilometers) underground from Geneva to Italy.

They found it traveled 60 nanoseconds faster than light. That’s sixty billionth of a second, a time no human brain could register.

“You could say it’s peanuts, but it’s not. It’s something that we can measure rather accurately with a small uncertainty,” Ereditato told The Associated Press.

If the experiment is independently repeated — most likely by teams in the United States or Japan — then it would require a fundamental rethink of modern physics.

“Everybody knows that the speed limit is c, the speed of light. And if you find some matter particle such as the neutrino going faster than light, this is something which immediately shocks everybody, including us,” said Ereditato, a researcher at the University of Bern, Switzerland.

Physicists not involved in the experiment have been understandably skeptical.

Alvaro De Rujula, a theoretical physicist at CERN, the European Organization for Nuclear Research outside Geneva from where the neutron beam was fired, said he blamed the readings on a so-far undetected human error.

If not, and it’s a big if, the door would be opened to some wild possibilities.

The average person, said De Rujula, “could, in principle, travel to the past and kill their mother before they were born.”

But Ereditato and his team are wary of letting such science fiction story lines keep them up at night.

“We will continue our studies and we will wait patiently for the confirmation,” he told the AP. “Everybody is free to do what they want: to think, to claim, to dream.”

He added: “I’m not going to tell you my dreams.”


Tags
9 years ago
The Liquid Oxygen/liquid Methane Engine, Developed By Armadillo Aerospace With Help From NASA, Is Tested

The liquid oxygen/liquid methane engine, developed by Armadillo Aerospace with help from NASA, is tested in the vacuum chamber at NASA’s White Sands Test Facility, August 2009. (NASA)


Tags
9 years ago
Quantum Vibrations Controlled For The First Time Ever, Could Help Find Gravitational Waves

Quantum Vibrations Controlled For The First Time Ever, Could Help Find Gravitational Waves

A remarkable experiment has successfully seen the effects of “quantum motion” at a relatively large scale. These are essentially tiny vibrations caused on an atomic level when an object otherwise appears to be stationary. Among its many implications, the research – which was also able to temporarily stop the effect – could aid the hunt for elusive ripples in space-time called gravitational waves.

The study, published in the journal Science, was carried out by a team of researchers from the California Institute of Technology (Caltech) and collaborators. In classical physics, an object – such as a ball in a bowl – will eventually come to rest as the forces of gravity and friction act upon it. But in quantum mechanics, which governs the behavior of matter and light at an atomic scale, nothing is ever truly at rest.

This means that everything has an extremely small quantum noise, or motion; tiny vibrations at an atomic scale. In this experiment, the researchers were able to observe the effect not just at an atomic level, but at a larger micrometer-scale and, for the first time, control the effect.

To detect it, they placed a flexible aluminum plate on top of a silicon substrate. A superconducting electrical circuit was then used to vibrate the plate at 3.5 million times per second. Subsequently cooling the plate to 0.01 Kelvin (-273.14°C, -459.65°F) reduced the vibrations in a classical sense to zero, but probing it with microwave fields showed a small quantum motion – roughly the diameter of a proton, or 10,000 times smaller than a hydrogen atom.

“What we have found is that the motion of a micron scale object requires a quantum description,” co-author Keith Schwab from Caltech told IFLScience. “Classical physics just can’t capture the quantum noise we see.”

According to Schwab, the noise is an “unavoidable consequence of the Heisenberg Uncertainty Principle,” which essentially states that everything behaves like a particle and a wave at the same time. However, the team found that by carefully applying a controlled microwave field, they could reduce the motion in certain places, at the cost of making it much larger elsewhere. This technique is known as quantum squeezing.

Read more ~ IFL Science

Photo credit: agsandrew/Shutterstock.


Tags
9 years ago
A High-Bandwidth Interplanetary Connection

A High-Bandwidth Interplanetary Connection

(click picture for link)

“A new study suggests that by twisting laser light, scientists could pack enough information into interplanetary beams to speed up extraterrestrial communications to the multi-gigabit level.…”


Tags
9 years ago
Imprisoned Molecules ‘Quantum Rattle’ In Their Cages

Imprisoned Molecules ‘Quantum Rattle’ in Their Cages

ScienceDaily (Aug. 20, 2012) — Scientists have discovered that a space inside a special type of carbon molecule can be used to imprison other smaller molecules such as hydrogen or water…. (read more)


Tags
9 years ago
Magnetic Wormhole Created In Lab

Magnetic Wormhole Created in Lab

“Ripped from the pages of a sci-fi novel, physicists have crafted a wormhole that tunnels a magnetic field through space.

“This device can transmit the magnetic field from one point in space to another point, through a path that is magnetically invisible,” said study co-author Jordi Prat-Camps, a doctoral candidate in physics at the Autonomous University of Barcelona in Spain. “From a magnetic point of view, this device acts like a wormhole, as if the magnetic field was transferred through an extra special dimension.“ 

The idea of a wormhole comes from Albert Einstein’s theories. In 1935, Einstein and colleague Nathan Rosen realized that the general theory of relativity allowed for the existence of bridges that could link two different points in space-time. Theoretically these Einstein-Rosen bridges, or wormholes, could allow something to tunnel instantly between great distances (though the tunnels in this theory are extremely tiny, so ordinarily wouldn’t fit a space traveler). So far, no one has found evidence that space-time wormholes actually exist. 

The new wormhole isn’t a space-time wormhole per se, but is instead a realization of a futuristic “invisibility cloak” first proposed in 2007 in the journal Physical Review Letters. This type of wormhole would hide electromagnetic waves from view from the outside. The trouble was, to make the method work for light required materials that are extremely impractical and difficult to work with, Prat said.

But it turned out the materials to make a magnetic wormhole already exist and are much simpler to come by. In particular, superconductors, which can carry high levels of current, or charged particles, expel magnetic field lines from their interiors, essentially bending or distorting these lines. This essentially allows the magnetic field to do something different from its surrounding 3D environment, which is the first step in concealing the disturbance in a magnetic field.So the team designed a three-layer object, consisting of two concentric spheres with an interior spiral-cylinder. The interior layer essentially transmitted a magnetic field from one end to the other, while the other two layers acted to conceal the field’s existence.”


Tags
9 years ago
Thermonuclear Art
Thermonuclear Art
Thermonuclear Art
Thermonuclear Art
Thermonuclear Art
Thermonuclear Art
Thermonuclear Art

Thermonuclear Art

It’s always shining, always ablaze with light and energy that drive weather, biology and more. In addition to keeping life alive on Earth, the sun also sends out a constant flow of particles called the solar wind, and it occasionally erupts with giant clouds of solar material, called coronal mass ejections, or explosions of X-rays called solar flares. These events can rattle our space environment out to the very edges of our solar system. In space, NASA’s Solar Dynamics Observatory, or SDO, keeps an eye on our nearest star 24/7. SDO captures images of the sun in 10 different wavelengths, each of which helps highlight a different temperature of solar material. In this video, we experience SDO images of the sun in unprecedented detail. Presented in ultra-high definition, the video presents the dance of the ultra-hot material on our life-giving star in extraordinary detail, offering an intimate view of the grand forces of the solar system.

Video source and credit: NASA Goddard (Highly recommended, don’t forget to watch in HD quality)


Tags
9 years ago
The Science Of Balloon Popping: Fragmentation Vs. Opening.
The Science Of Balloon Popping: Fragmentation Vs. Opening.

The Science of Balloon Popping: Fragmentation vs. Opening.

Soon to be published in Physical Review Letters, the research identifies how differing levels of stress affect rubber and latex.

The first depicts a moderately inflated balloon that splits uniformly into two pieces.

The second depicts a highly inflated balloon that is under a larger level of stress, which fragments into smaller pieces when popped.

(The authors of this work are Sébastien Moulinet and Mokhtar Adda-Bedia)


Tags
9 years ago

7 Things to Know About Spacewalks

On Wednesday, Oct. 28 and Friday, Nov. 6, Commander Scott Kelly and Flight Engineer Kjell Lindgren will perform spacewalks in support of space station assembly and maintenance. You can watch both of these events live on NASA Television. But, before you do, here are 7 things to know:

1. What’s the Point of a Spacewalk?

image

Spacewalks are important events where crew members repair, maintain and upgrade parts of the International Space Station. Spacewalks can also be referred to as an EVA – Extravehicular Activity. On Wednesday, Oct. 28, Commander Scott Kelly and Flight Engineer Kjell Lindgren will complete a spacewalk. During this time they will service the Canadarm2 robotic arm, route cables for a future docking port, and place a thermal cover over a dark matter detection experiment, which is a state-of-the-art particles physics detector that has been attached to the station since 2011.

2. What Do They Wear?

image

The Extravehicular Mobility Unit (EMU) spacewalking suit weighs around 350 pounds. It’s weightless in space, but mass is still very real. The EMU provides a crew member with life support and an enclosure that enables them to work outside the space station. The suit provides atmospheric containment, thermal insulation, cooling, solar radiation protection and micrometeoroid/orbital debris protection.

3. How Long Are Spacewalks?

image

Spacewalks typically last around 6 ½ hours, but can be extended to 7 or 8 hours, if necessary. The timeline is designed to accommodate as many tasks as possible, as spacewalks require an enormous amount of work to prepare.

4. What About Eating and Drinking?

image

Before a spacewalk astronauts eat light, usually something like a protein bar. The spacesuits also have a drink bag inside, and there is a bite valve that allows ready access to water.

5. What About Communication?

image

Spacewalkers wear a ‘comm’ cap that allows them to constantly communicate with astronauts inside the space station that are helping with the walk, and with mission control. Astronauts also wear a checklist on their left wrist called a “cuff checklist”. This list contains emergency procedures.

6. What About Light?

image

Something that most people don’t realize about spacewalks is that the crew will experience a sunrise/sunset every 45 minutes. Luckily, their spacesuits are equipped with lights that allow them to see in times of darkness.

7. How Do They Stay Safe?

image

When on a spacewalk, astronauts use safety tethers to stay close to their spacecraft. One end of the tether is hooked to the spacewalker, while the other end is connected to the vehicle. Another way astronauts stay safe is by wearing a SAFER, which is a Simplified Aid for EVA Rescue. This device is worn like a backpack and uses small jet thrusters to let an astronaut move around in space.

You can watch both of the upcoming spacewalks live on: NASA Television or the NASA App, or follow along on @Space_Station Twitter.

Wednesday, Oct. 28: Coverage begins at 6:30 a.m. EDT. Spacewalk begins at 8:10 a.m.

Friday, Nov. 6: Coverage begins at 5:45 a.m. EDT. Spacewalk begins at 7:15 a.m.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
Loading...
End of content
No more pages to load
  • sansbook
    sansbook reblogged this · 9 years ago
  • doiknoyou
    doiknoyou liked this · 9 years ago
sansbook - * (It's a joke book.)
* (It's a joke book.)

* (You look inside...) * (Inside the joke book is a quantum physics book.)

44 posts

Explore Tumblr Blog
Search Through Tumblr Tags