is there a smell comparable to space ? i assume we dont know because we would die if we tried to smell it but thats so cool
yeah if humans tried to smell space just like that, we’d die, no doubt about it
but the smell of space lingers on spacewalk suits, and docking hatches when astronauts open them!
apparently, space itself smells like burning hot metal, or a hot barbeque grill with a slight hint of spent gasoline. The moon, apparently, smells like a gun after its been shot!
The coolest thing about it all is that the smell is actually what are left of dying stars- it’s literally the smell of stardust, and the particles smell like that because they’re so rich in hydrocarbons- something so very essential to life, and speculated by a lot of astronomers and astrobiologists and such to be the very thing life on earth started from!
another neat fact is that no two solar systems smell the same- ours smells like that because our solar system in particular is extremely rich in carbon, and other solar systems and places in the universe will have extremely different smells depending on what elements are most abundant in their system!
These postage-stamp-size images reveal 36 young galaxies caught in the act of merging with other galaxies. These galaxies appear as they existed many billions of years ago. Astronomers have dubbed them “tadpole galaxies” because of their distinct knot-and-tail shapes, which suggest that they are engaging in galactic mergers.
Credit: NASA, A. Straughn, S. Cohen, and R. Windhorst (Arizona State University), and the HUDF team (Space Telescope Science Institute) Source: http://www.spacetelescope.org/images/opo0604a/
Jupiter is the largest planet in our solar system. For some perspective, if it were hollow, more than 1,300 Earths could fit inside of it! The giant planet contains two-thirds of all the planetary mass in the solar system and holds more than dozens of moons in its gravitational grip. But what about a visit to this giant planet?
Let’s be honest…Jupiter is not a nice place to visit. It’s a giant ball of gas and there’s nowhere to land. Any spacecraft – or person – passing through the colorful clouds gets crushed and melted. On Jupiter, the pressure is so strong it squishes gas into liquid. Its atmosphere can crush a metal spaceship like a paper cup.
Jupiter’s stripes and swirls are cold, windy clouds of ammonia and water. Jupiter’s Great Red Spot is a giant storm BIGGER THAN EARTH! This storm has lasted hundreds of years.
Since Jupiter’s atmosphere is made up of mostly hydrogen and helium, it’s poisonous. There’s also dangerous radiation, more than 1,000 times the lethal level for a human.
Scientists think that Jupiter’s core may be a thick, super hot soup…up to 50,000 degrees! Woah!
The Moons
Did you know that Jupiter has its own “mini solar system” of 50 moons? Scientists are most interested in the Galilean satellites – which are the four largest moons discovered by Galileo Galilei in 1610.
Today, Galileo would be astounded to know some of the facts about these moons. The moon Io has active volcanos. Ganymede has its own magnetic field while Europa has a frozen crust with liquid-water underneath making it a tempting place to explore for future missions.
When Juno arrives to Jupiter on July 4, it will bring with it a slew of instruments such as infrared imager/spectrometer and vector magnetometer among the half a dozen other scientific tools in its payload.
Juno will avoid Jupiter’s highest radiation regions by approaching over the north, dropping to an altitude below the planet’s radiation belts – which are analogous to Earth’s Van Allen belts, but far more deadly – and then exiting over the south. To protect sensitive spacecraft electronics, Juno will carry the first radiation shielded electronics vault, a critical feature for enabling sustained exploration in such a heavy radiation environment.
Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
HCG 87: A Small Group of Galaxies : Sometimes galaxies form groups. For example, our own Milky Way Galaxy is part of the Local Group of Galaxies. Small, compact groups, like Hickson Compact Group 87 shown above, are interesting partly because they slowly self-destruct. Indeed, the galaxies of HCG 87 are gravitationally stretching each other during their 100-million year orbits around a common center. The pulling creates colliding gas that causes bright bursts of star formation and feeds matter into their active galaxy centers. HCG 87 is composed of a large edge-on spiral galaxy visible near the image center, an elliptical galaxy visible to its right, and a spiral galaxy visible near the top. The small spiral near the center might be far in the distance. Several stars from our Galaxy are also visible in the foreground. Studying groups like HCG 87 allows insight into how all galaxies form and evolve. via NASA
js
The best photographs that the Hubble space telescope has ever taken.
1. Sombrero galaxy
2. V838 Monocerotis
3. Jupiter’s great red spot
4. Carina nebula
5. Interacting galaxies
6. Pillars of creation
7. Cat’s eye nebula
8. Planetary Nebula NGC 5189
9. Abell 2744 Frontier Field
(Source)
Comas and Tails of Comets The generally unexpected and sometimes spectacular appearance of comets have triggered the interest of many people throughout history. A bright comet can easily be seen with the naked eye. Comets are usually not discovered until after a coma or tail has formed. Depending on the apparent size of the coma or tail, a comet can be very bright. Some comets have a tail extending more than 45˚ on the sky. The earliest records of comet observations date to ~6000BCE in China. The smaller nucleus (rocky body) of a comet, often only a few kilometres in diameter, is usually hidden from view by the large coma, a cloud of gas and dust roughly 10 to the power of 4-10 to the power of 5 km in diameter and not seen with the naked eye, a large hydrogen coma, between 1 and 10 million km in extent, which surrounds the nucleus and visible gas/dust coma. Two tails are often visible, both in the antisolar direction: a curved yellowish dust tail and a straight ion tail, usually of a blue colour. Comets are usually inert at large heliocentric distances and only develop a coma and tails when they get closer to the sun. When the sublimating gas evolves off the surface of a comet’s nucleus, dust is dragged along. The gas and dust form a comet’s coma and hide the nucleus from view. Most comets are discovered after the coma has formed when they are bright enough to be seen with relatively small telescopes. ~ JM Image Credit More Info: Comets, NASA Coma