Curate, connect, and discover
Unfortunately, if you’re sitting your A Level chemistry exam, you need to know a little more than the basic properties of alkanes outlined in my last post. Luckily though, this post takes you through fractional distillation and the two types of cracking - isn’t that convenient?
Crude oil contains carbon compounds formed by the effects of pressure and high temperature on plant and animal remnants. It is viscious, black and found in rocks beneath the earth’s surface. It is a mixture of mainly alkane hydrocarbons which are separated by a process called fractional distillation. Crude oil is essential because it is burned as a fuel and each fraction has different properties e.g. diesel, petrol, jet fuel.
Fractional distillation is the continual evaporation and condensation of a mixture which causes fractions to split due to a difference in boiling point. It is important to note that fractional distillation does not separate crude oil into pure compounds but rather less complex mixtures. Fractions are groups of compounds that have similar boiling points and are removed at the same level of a fractionating column.
The first step in this process is to heat crude oil in a furnace until some changes state from a liquid to a vapour. This mixture goes up a fractionating tower or column which is hotter at the bottom than the top and reaches a layer which is cool enough to condense and be collected. Shorter chain molecules are collected at the top where it is cooler since they have lower boiling points.
As you go down the fractionating column, bear in mind that: the column temperature increases, the boiling point increases, the number of carbon atoms increases and the strength of the Van der Waals’ between molecules increases.
Different fractions have different usefulnesses and often, it is the fractions with lower boiling points and shorter chains which are much more purposeful. Therefore there needs to be a process to getting shorter chains because they are the least abundant in crude oil samples. To meet demand, long chain molecules that are less useful are broken down into shorter chain molecules. This is done by cracking.
Cracking is a process where long chain hydrocarbon molecules are broken down into shorter chain molecules which are in high demand. This can be done one of two ways - thermal or catalytic.
Thermal cracking involves heating long chain alkanes to high temperatures - usually between 1000 - 1200K. It also uses high pressures up to 70atm and takes just one second. It only needs a second because the conditions could decompose the molecule completely to produce carbon and hydrogen instead. The conditions produce shorter chain alkanes and mostly alkenes.
A typical equation for this:
Decane -> octane + ethene
C10H22 -> C8H18 + C2H4
Catalytic cracking also breaks down long alkanes by heat under pressure using the presence of a zeolite catalyst. Temperature used is approx. 800-1000K and the pressure is often between 1-2 atm. Zeolite is an acidic mineral with a honeycomb structure, made from aluminium oxide and silicion dioxide. The honeycomb structure gives the catalyst a larger surface area which increases ROR. Factories which catalytically crack are often operated continuously for around 3 years at a time and produce branched alkanes, cycloalkanes and aromatic compounds.
You need to be able to compare the conditions of catalytic and thermal cracking for the A Level exam. Know that thermal cracking has a high temperature and pressure, a short duration, no catalyst and produces a high percentage of alkenes and some short chain alkanes. Catalytic uses a catalyst, a high temperature, a low pressure and produces aromatic hydrocarbons and motor fuels.
SUMMARY
Crude oil contains carbon compounds formed by the effects of pressure and high temperature on plant and animal remnants. I It is a mixture of mainly alkane hydrocarbons which are separated by a process called fractional distillation.
Fractional distillation is the continual evaporation and condensation of a mixture which causes fractions to split due to a difference in boiling point.
It is important to note that fractional distillation does not separate crude oil into pure compounds but rather less complex mixtures.
Fractions are groups of compounds that have similar boiling points and are removed at the same level of a fractionating column.
The first step in this process is to heat crude oil in a furnace until some changes state from a liquid to a vapour. This mixture goes up a fractionating tower or column which is hotter at the bottom than the top and reaches a layer which is cool enough to condense and be collected. Shorter chain molecules are collected at the top where it is cooler since they have lower boiling points.
As you go down the fractionating column, bear in mind that: the column temperature increases, the boiling point increases, the number of carbon atoms increases and the strength of the Van der Waals’ between molecules increases.
Fractions with lower boiling points and shorter chains are much more purposeful but are the least abundant in crude oil samples. To meet demand, long chain molecules that are less useful are broken down into shorter chain molecules.
Cracking is a process where long chain hydrocarbon molecules are broken down into shorter chain molecules which are in high demand.
Thermal cracking involves heating long chain alkanes to high temperatures - usually between 1000 - 1200K. It also uses high pressures up to 70atm and takes just one second. It only needs a second because the conditions could decompose the molecule completely to produce carbon and hydrogen instead. The conditions produce shorter chain alkanes and mostly alkenes.
Catalytic cracking also breaks down long alkanes by heat under pressure using the presence of a zeolite catalyst. Temperature used is approx. 800-1000K and the pressure is often between 1-2 atm. Zeolite is an acidic mineral with a honeycomb structure, made from aluminium oxide and silicion dioxide. The honeycomb structure gives the catalyst a larger surface area which increases ROR.
You need to be able to compare the conditions of catalytic and thermal cracking for the A Level exam. Know that thermal cracking has a high temperature and pressure, a short duration, no catalyst and produces a high percentage of alkenes and some short chain alkanes. Catalytic uses a catalyst, a high temperature, a low pressure and produces aromatic hydrocarbons and motor fuels.
Happy studying!
So you want to be an organic chemist? Well, learning about hydrocarbons such as alkanes is a good place to start…
Alkanes are a homologous series of hydrocarbons, meaning that each of the series differs by -CH2 and that the compounds contain carbon and hydrogen atoms only. Carbon atoms in alkanes have four bonds which is the maximum a carbon atom can have - this is why the molecule is described to be saturated. Saturated hydrocarbons have only single bonds between the carbon atoms.
The general formula of an alkane is CnH2n+2 where n is the number of carbons. For example, if n = 3, the hydrocarbon formula would be C3H8 or propane. Naming alkanes comes from the number of carbons in the chain structure.
Here are the first three alkanes. Each one differs by -CH2.
Shorter chain alkanes are gases at room temperature, medium ones are liquids and the longer chain alkanes are waxy solids.
Alkanes have these physical properties:
1. They are non-polar due to the tiny difference in electronegativity between the carbon and hydrogen atoms.
2. Only Van der Waals intermolecular forces exist between alkane molecules. The strength of these increase as relative molecular mass increases therefore so does the melting/boiling point.
3. Branched chain alkanes have lower melting and boiling points than straight chain isomers with the same number of carbons. Since atoms are further apart due to a smaller surface area in contact with each other, the strength of the VDWs is decreased.
4. Alkanes are insoluble in water but can dissolve in non-polar liquids like hexane and cyclopentane. Mixtures are separated by fractional distillation or a separating funnel.
The fractional distillation of crude oil, cracking and the combustion equations of the alkanes will be in the next post.
SUMMARY
Alkanes are a homologous series of hydrocarbons. Carbon atoms in alkanes have four bonds which is the maximum a carbon atom can have - this is why the molecule is described to be saturated. Saturated hydrocarbons have only single bonds between the carbon atoms.
The general formula of an alkane is CnH2n+2 where n is the number of carbons.
Shorter chain alkanes are gases at room temperature, medium ones are liquids and the longer chain alkanes are waxy solids.
They are non-polar.
Only Van der Waals intermolecular forces exist between alkane molecules. The strength of these increase as relative molecular mass increases therefore so does the melting/boiling point.
Branched chain alkanes have lower melting and boiling points than straight chain isomers with the same number of carbons.
Alkanes are insoluble in water but can dissolve in non-polar liquids like hexane. Mixtures are separated by fractional distillation or a separating funnel.
Haloalkanes are more commonly referred to as halogenoalkanes. Obviously you’ve already read my post on halogenoalkanes and their properties so there’s no surprise that you’re itching to read what I’ve got to say about these beauties and their reactions! Should we delve in?
There are a few different kinds of reactions you must learn for the A Level exam that involve halogenoalkanes.
The first is the synthesis of chloroalkanes via the photochemical chlorination of the alkanes. I know it looks scary, but don’t worry, it is simpler than it sounds. It essentially means “forming chloroalkanes through chlorinating an alkane in the presence of sunlight”.
Chlorine will react with methane when UV light is present and will form several kinds of chloroalkanes and fumes of hydrogen chloride gas. Chloromethane was once commonly used as a refridgerant. Depending on how many chlorine molecules there are, there will be different compounds formed:
methane + chlorine -> chloromethane + hydrogen chloride
CH4 + Cl2 -> CH3Cl + HCl
or
methane + chlorine -> trichloromethane + hydrogen chloride
CH4 + 3Cl2 -> CHCl3 + 3HCl
When undergone in real life, mixtures of halogenoalkanes are produced with some long chain alkanes which can be separated out with fractional distillation.
To understand what happens in an overall chemical reaction, chemists use mechanisms. These basically show the step-by-step process that is usually shown by a simple symbol equation that summarises everything.
The chlorination of methane is something you must learn the mechanism for. It’s pretty easy but involves a lot of steps and must be revised periodically to remember them.
The actual reaction is a substitution reaction because one atom or group is replaced by another. Since the chlorine involved is a free radical, it can also be called a free-radical substitution reaction.
1. Initiation
UV light is essential for the first step in the mechanism. This breaks the Cl-Cl covalent bond so that each chlorine leaves with one electron from the shared pair. Chlorine free radicals, with one unpaired electron in the outer shell, are formed. Free radicals are only formed if a bond splits evenly - each atom getting one of the two electrons. The name given to this is homolytic fission.
2. Propagation
This has two sub-steps
(a) Chlorine free radicals (highly reactive) react with methane to form hydrogen chloride and leave a methyl free radical.
Cl• + CH4 -> HCl + •CH3
(b) This free radical then reacts with another chlorine to form chloromethane and another chlorine free radical. Producing free radicals is a chain reaction which is why it is such a problem in ozone depletion - a little amount can cause a lot of destruction.
•CH3 + Cl2 -> CH3Cl + •Cl
3. Termination
This step stops the chain reaction. It only happens when two free radicals collide to form a molecule in several ways:
Cl• + Cl• -> Cl2
UV light would just break down the chlorine molecule again, so although this is technically a termination reaction it is not the most efficient.
Cl• + •CH3 -> CH3Cl
Forming one molecule of methane uses one chlorine and one methyl free radical.
•CH3 + •CH3 -> C2H6
Ethane can be formed from two methyl free radicals - this is why there are longer chain alkanes in the mixture.
This whole process is how organic halogenoalkanes are the product of photochemical reactions of halogens with alkanes in UV light - made via free radical substitution mechanisms in chain reaction.
Another reaction you need to know is a nucleophilic substitution reactions. A nucleophile is an electron pair donor or proton acceptor - the name comes from Greek origins (”loves nucleus”) - such as hydroxide ions, cyanide ions or ammonia molecules. Hydroxide and cyanide ions are negative but ammonia is neutral.
Halogenoalkanes have a polar bond because of the difference between the highly electronegative halogen and the carbon atom. The 𝛿+ carbon can go under nucleophilic attack. The mechanism for negatively charged nucleophiles these in general is:
Nu represents the nucleophile. This example is with a bromoalkane. Make sure to include curly arrows that begin at a lone pair or the centre of a bond and end at an atom or centre of bond, and delta (slight) charges.
Lets look at a more specific example:
One nucleophile that can be used is a hydroxide ion, found in either water or sodium hydroxide. In this case, you need to know about aqueous sodium hydroxide or potassium hydroxide and a halogenoalkane. This takes place at room temperature but is slow so is often refluxed (continuously boiled and condensed back into the reaction flask). Reflux apparatus is shown below:
The halogenoalkane is dissolved into ethanol since it is insoluable in water and this solution along with the aqueous hydroxide can mix. The product produced is an alcohol, which is organic.
The general reaction is:
R-CH2X + NaOH -> CH3CH2OH + NaX
Where X represents a halogen.
You must learn the mechanism for this reaction. The lone pair on the hydroxide attacks the carbon atom attached to the halogen and this causes both carbon electrons to move to the halogen which becomes a halide ion.
The reaction of a hydroxide ion can also be classed as a hydrolysis reaction as it breaks down chemical bonds with water or hydroxide ions. The speed of reaction depends on the strength of the bond - a stronger carbon-halogen bond, a slower reaction.
C-I is the most reactive (reactivity increases down group 7) and C-F is therefore the least reactive and strongest.
Part two of this post will cover nucleophilic substitution of cyanide ions and ammonia molecules, as well as elimination reactions.
SUMMARY
You need to know about the synthesis of chloroalkanes via the photochemical chlorination of the alkanes. - “forming chloroalkanes through chlorinating an alkane in the presence of sunlight”.
Chlorine will react with methane when UV light is present and will form several kinds of chloroalkanes and fumes of hydrogen chloride gas. Depending on how many chlorine molecules there are, there will be different compounds formed.
When undergone in real life, mixtures of halogenoalkanes are produced with some long chain alkanes which can be separated out with fractional distillation.
To understand what happens in an overall chemical reaction, chemists use mechanisms. These basically show the step-by-step process.
The chlorination of methane is something you must learn the mechanism for. The actual reaction is a substitution reaction because one atom or group is replaced by another.
The first step is initiation - UV light is essential for the first step in the mechanism. This breaks the Cl-Cl covalent bond so that each chlorine leaves with one electron from the shared pair. Chlorine free radicals, with one unpaired electron in the outer shell, are formed. Free radicals are only formed if a bond splits evenly - each atom getting one of the two electrons.
Step two is propagation: (a) Chlorine free radicals (highly reactive) react with methane to form hydrogen chloride and leave a methyl free radical (b) this free radical then reacts with another chlorine to form chloromethane and another chlorine free radical. Producing free radicals is a chain reaction which is why it is such a problem in ozone depletion - a little amount can cause a lot of destruction.
To stop the chain reaction, the final step is termination. It only happens when two free radicals collide to form a molecule in several ways: two chlorine free radicals forming a chlorine molecule, two methyl FRs forming ethane or a chlorine FR and a methyl FR forming chloromethane.
Ethane contributes to the longer chain alkanes in the mixture.
Another reaction you need to know is a nucleophilic substitution reactions. A nucleophile is an electron pair donor or proton acceptor, such as hydroxide ions, cyanide ions or ammonia molecules. Hydroxide and cyanide ions are negative but ammonia is neutral.
Halogenoalkanes have a polar bond because of the difference between the highly electronegative halogen and the carbon atom. The 𝛿+ carbon can go under nucleophilic attack.
Nu represents the nucleophile. Make sure to include curly arrows that begin at a lone pair or the centre of a bond and end at an atom or centre of bond, and delta (slight) charges.
One nucleophile that can be used is a hydroxide ion, found in either water or sodium hydroxide. In this case, you need to know about aqueous sodium hydroxide or potassium hydroxide and a halogenoalkane. This takes place at room temperature but is slow so is often refluxed (continuously boiled and condensed back into the reaction flask). The halogenoalkane is dissolved into ethanol since it is insoluable in water and this solution along with the aqueous hydroxide can mix. The product produced is an alcohol, which is organic.
The general reaction is :R-CH2X + NaOH -> CH3CH2OH + NaX where X represents a halogen
The lone pair on the hydroxide attacks the carbon atom attached to the halogen and this causes both carbon electrons to move to the halogen which becomes a halide ion.
The reaction of a hydroxide ion can also be classed as a hydrolysis reaction as it breaks down chemical bonds with water or hydroxide ions.
The speed of reaction depends on the strength of the bond - a stronger carbon-halogen bond, a slower reaction. C-I is the most reactive (reactivity increases down group 7) and C-F is therefore the least reactive and strongest.