Curate, connect, and discover
May the fifth be with you because history is about to be made: As early as May 5, 2018, we’re set to launch Mars InSight, the very first mission to study the deep interior of Mars. We’ve been roaming the surface of Mars for a while now, but when InSight lands on Nov. 26, 2018, we’re going in for a deeper look. Below, 10 things to know as we head to the heart of Mars.
Coverage of prelaunch and launch activities begins Thursday, May 3, on NASA Television and our homepage.
"Insight" is to see the inner nature of something, and the InSight lander—a.k.a. Interior Exploration using Seismic Investigations, Geodesy and Heat Transport—will do just that. InSight will take the "vital signs" of Mars: its pulse (seismology), temperature (heat flow) and reflexes (radio science). It will be the first thorough check-up since the planet formed 4.5 billion years ago.
You read that right: earthquakes, except on Mars. Scientists have seen a lot of evidence suggesting Mars has quakes, and InSight will try to detect marsquakes for the first time. By studying how seismic waves pass through the different layers of the planet (the crust, mantle and core), scientists can deduce the depths of these layers and what they're made of. In this way, seismology is like taking an X-ray of the interior of Mars.
Want to know more? Check out this one-minute video.
InSight is a Mars mission, but it’s also so much more than that. By studying the deep interior of Mars, we hope to learn how other rocky planets form. Earth and Mars were molded from the same primordial stuff more than 4.5 billion years ago, but then became quite different. Why didn’t they share the same fate? When it comes to rocky planets, we’ve only studied one in great detail: Earth. By comparing Earth's interior to that of Mars, InSight's team hopes to better understand our solar system. What they learn might even aid the search for Earth-like planets outside our solar system, narrowing down which ones might be able to support life.
InSight looks a bit like an oversized crane game: When it lands on Mars this November, its robotic arm will be used to grasp and move objects on another planet for the first time. And like any crane game, practice makes it easier to capture the prize.
Want to see what a Mars robot test lab is like? Take a 360 tour.
InSight will be traveling with a number of instruments, from cameras and antennas to the heat flow probe. Get up close and personal with each one in our instrument profiles.
InSight has three major parts that make up the spacecraft: Cruise Stage; Entry, Descent, and Landing System; and the Lander. Find out what each one does here.
Mars has weak sunlight because of its long distance from the Sun and a dusty, thin atmosphere. So InSight’s fan-like solar panels were specially designed to power InSight in this environment for at least one Martian year, or two Earth years.
Our scientists have found evidence that Mars’ crust is not as dense as previously thought, a clue that could help researchers better understand the Red Planet’s interior structure and evolution. “The crust is the end-result of everything that happened during a planet’s history, so a lower density could have important implications about Mars’ formation and evolution,” said Sander Goossens of our Goddard Space Flight Center in Greenbelt, Maryland.
InSight won’t be flying solo—it will have two microchips on board inscribed with more than 2.4 million names submitted by the public. "It's a fun way for the public to feel personally invested in the mission," said Bruce Banerdt of our Jet Propulsion Laboratory, the mission's principal investigator. "We're happy to have them along for the ride."
The rocket that will loft InSight beyond Earth will also launch a separate NASA technology experiment: two mini-spacecraft called Mars Cube One, or MarCO. These suitcase-sized CubeSats will fly on their own path to Mars behindInSight. Their goal is to test new miniaturized deep space communication equipment and, if the MarCOs make it to Mars, may relay back InSight data as it enters the Martian atmosphere and lands. This will be a first test of miniaturized CubeSat technology at another planet, which researchers hope can offer new capabilities to future missions.
Check out the full version of ‘Solar System: 10 Thing to Know This Week’ HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Craving some summer Sun? We're inviting people around the world to submit their names to be placed on a microchip that will travel to the Sun aboard Parker Solar Probe!
Launching summer 2018, Parker Solar Probe will be our first mission to "touch" a star. The spacecraft - about the size of a small car - will travel right through the Sun's atmosphere, facing brutal temperatures and radiation as it traces how energy and heat move through the solar corona and explores what accelerates the solar wind and solar energetic particles.
Send your name along for the ride at go.nasa.gov/HotTicket! Submissions will be accepted through April 27, 2018.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
From the unique vantage point of about 25,000 feet above Earth, our Associate Administrator of Science at NASA, Dr. Thomas Zurbuchen, witnessed the 2017 eclipse. He posted this video to his social media accounts saying, “At the speed of darkness...watch as #SolarEclipse2017 shadow moves across our beautiful planet at <1 mile/second; as seen from GIII aircraft”.
Zurbuchen, along with NASA Acting Administrator Robert Lightfoot, Associate Administrator Lesa Roe traveled on a specially modified Gulfstream III aircraft flying north over the skies of Oregon.
In order to capture images of the event, the standard windows of the Gulfstream III were replaced with optical glass providing a clear view of the eclipse. This special glass limits glare and distortion of common acrylic aircraft windows. Heaters are aimed at the windows where the imagery equipment will be used to prevent icing that could obscure a clear view of the eclipse.
Learn more about the observations of the eclipse made from this aircraft HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Psyche mission to a metal world, which will explore a giant metal asteroid known as 16 Psyche, is getting a new, earlier launch date. Psyche is now expected to launch from the Kennedy Space Center in 2022, cruise through the solar system for 4.6 years, and arrive at the Psyche asteroid in 2026, four years earlier than planned.
Psyche is the name of the NASA space mission and the name of the unique metal asteroid orbiting the sun between Mars and Jupiter. The asteroid was discovered in 1852 by Italian astronomer Annibale de Gasparis and named after the Greek mythological figure Psyche, whom Cupid fell in love with. "Psyche" in Greek also means "soul."
The Psyche Mission was selected for flight earlier this year under NASA's Discovery Program. And it will take a village to pull off: The spacecraft is being built by Space Systems Loral in Palo Alto, California; the mission is led by Arizona State University; and NASA's Jet Propulsion Laboratory will be responsible for mission management, operations and navigation.
For the very first time, this mission will let us examine a world made not of rock and ice, but metal. Scientists think Psyche is comprised mostly of metallic iron and nickel, similar to Earth's core - which means Psyche could be an exposed core of an early planet as large as Mars.
Psyche the asteroid is officially known as 16 Psyche, since it was the 16th asteroid to be discovered. It lies within the asteroid belt, is irregularly shaped, about the size of Massachusetts, and is about three times farther away from the sun than Earth.
The Psyche mission will observe the asteroid for 20 months. Scientists hope to discover whether Psyche is the core of an early planet, how old it is, whether it formed in similar ways to Earth's core, and what its surface is like. The mission will also help scientists understand how planets and other bodies separated into their layers including cores, mantles and crusts early in their histories. "Psyche is the only known object of its kind in the solar system and this is the only way humans will ever visit a core," said Principal Investigator Lindy Elkins-Tanton of Arizona State University.
The mission launch and arrival were moved up because Psyche's mission design team were able to plot a more efficient trajectory that no longer calls for an Earth gravity assist, ultimately shortening the cruise time. The new trajectory also stays farther from the sun, reducing the amount of heat protection needed for the spacecraft, and will still include a Mars flyby in 2023.
The Psyche spacecraft will be decked out with a multispectral imager, gamma ray and neutron spectrometer, magnetometer, and X-band gravity science investigation. More: https://sese.asu.edu/research/psyche
In order to support the new mission trajectory, the solar array system was redesigned from a four-panel array in a straight row on either side of the spacecraft to a more powerful five-panel x-shaped design, commonly used for missions requiring more capability. Much like a sports car, combining a relatively small spacecraft body with a very high-power solar array design means the Psyche spacecraft will be able to speed to its destination much faster. Check out this artist's-concept illustration here: https://www.nasa.gov/image-feature/artists-concept-of-psyche-spacecraft-with-five-panel-array
Watch the planned Psyche mission in action.
Our missions to asteroids began with the orbiter NEAR of asteroid Eros, which arrived in 2000, and continues with Dawn, which orbited Vesta and is now in an extended mission at Ceres. The mission OSIRIS-REx, which launched on Sept. 8, 2016, is speeding toward a 2018 rendezvous with the asteroid Bennu, and will deliver a sample back to Earth in 2023. The Lucy mission is scheduled to launch in October 2021 and will explore six Jupiter Trojan asteroids. More: https://www.jpl.nasa.gov/news/news.php?feature=6713
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
After more than 12 years at Saturn, our Cassini mission has entered the final year of its epic voyage to the giant planet and its family of moons. But the journey isn't over. The upcoming months will be like a whole new mission, with lots of new science and a truly thrilling ride in the unexplored space near the rings. Later this year, the spacecraft will fly repeatedly just outside the rings, capturing the closest views ever. Then, it will actually orbit inside the gap between the rings and the planet's cloud tops.
Get details on Cassini’s final mission
The von Kármán Lecture Series: 2016
As the New Horizon’s mission headed to Pluto, our Chandra X-Ray Observatory made the first detection of the planet in X-rays. Chandra’s observations offer new insight into the space environment surrounding the largest and best-known object in the solar system’s outermost regions.
See Pluto’s X-Ray
When the cameras on our approaching New Horizons spacecraft first spotted the large reddish polar region on Pluto's largest moon, Charon, mission scientists knew two things: they'd never seen anything like it before, and they couldn't wait to get the story behind it. After analyzing the images and other data that New Horizons has sent back from its July 2015 flight through the Pluto system, scientists think they've solved the mystery. Charon's polar coloring comes from Pluto itself—as methane gas that escapes from Pluto's atmosphere and becomes trapped by the moon's gravity and freezes to the cold, icy surface at Charon's pole.
Get the details
The famed red-rock deserts of the American Southwest and recent images of Mars bear a striking similarity. New color images returned by our Curiosity Mars rover reveal the layered geologic past of the Red Planet in stunning detail.
More images
Our Hubble Space Telescope recently observed a comet breaking apart. In a series of images taken over a three-day span in January 2016, Hubble captured images of 25 building-size blocks made of a mixture of ice and dust drifting away from the comet. The resulting debris is now scattered along a 3,000-mile-long trail, larger than the width of the continental U.S.
Learn more
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:
1. You Call the Shots
This July, when the Juno mission arrives at Jupiter, it will eye the massive planet with JunoCam. What adds extra interest to this mission is that the public is invited to help Juno scientists choose which images JunoCam will take. Now is the time to get involved.
2. Dawn Delivers
We've seen several images now from the Dawn spacecraft's new, close orbit around Ceres—and they don't disappoint. Exquisitely detailed photos of the dwarf planet reveal craters, cliffs, fractures, canyons and bright spots in many locations. "Everywhere we look in these new low-altitude observations, we see amazing landforms that speak to the unique character of this most amazing world," said the mission's principal investigator.
3. Remembering the Visit to a Sideways World
Jan. 24 is the 30th anniversary of Voyager 2's Uranus flyby. The seventh planet is notable for the extreme tilt of its axis, its lacy ring system and its large family of moons—10 of which were discovered thanks to Voyager's close encounter. In fact, we learned much of what we know about the Uranian system during those few days in 1986.
4. A Decade in the Deep
The New Horizons spacecraft left Earth 10 years ago this week. Its long voyage into deep space is, even now, transforming our understanding of the outer solar system. New data and pictures from the Pluto flyby are still streaming down from the spacecraft. Pending the approval of an extended mission, New Horizons is en route to a 2019 rendezvous with a small, unexplored world in the distant Kuiper Belt.
5. Power at a Distance
Space exploration helped drive the development of practical solar cells, and now solar power has gone farther than ever before. Last week, NASA's Juno spacecraft broke the record for the most distant solar-powered craft when it passed a distance of 493 million miles (793 million kilometers) from the sun. The four-ton Juno spacecraft draws energy from three 30-foot-long (9-meter) solar arrays festooned with 18,698 individual cells.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com