10 Things: Journey To The Center Of Mars

10 Things: Journey to the Center of Mars

May the fifth be with you because history is about to be made: As early as May 5, 2018, we’re set to launch Mars InSight, the very first mission to study the deep interior of Mars. We’ve been roaming the surface of Mars for a while now, but when InSight lands on Nov. 26, 2018, we’re going in for a deeper look. Below, 10 things to know as we head to the heart of Mars.

image

Coverage of prelaunch and launch activities begins Thursday, May 3, on NASA Television and our homepage.

1. What’s in a name? 

image

"Insight" is to see the inner nature of something, and the InSight lander—a.k.a. Interior Exploration using Seismic Investigations, Geodesy and Heat Transport—will do just that. InSight will take the "vital signs" of Mars: its pulse (seismology), temperature (heat flow) and reflexes (radio science). It will be the first thorough check-up since the planet formed 4.5 billion years ago.

2. Marsquakes. 

You read that right: earthquakes, except on Mars. Scientists have seen a lot of evidence suggesting Mars has quakes, and InSight will try to detect marsquakes for the first time. By studying how seismic waves pass through the different layers of the planet (the crust, mantle and core), scientists can deduce the depths of these layers and what they're made of. In this way, seismology is like taking an X-ray of the interior of Mars.

Want to know more? Check out this one-minute video.

3. More than Mars. 

image

InSight is a Mars mission, but it’s also so much more than that. By studying the deep interior of Mars, we hope to learn how other rocky planets form. Earth and Mars were molded from the same primordial stuff more than 4.5 billion years ago, but then became quite different. Why didn’t they share the same fate? When it comes to rocky planets, we’ve only studied one in great detail: Earth. By comparing Earth's interior to that of Mars, InSight's team hopes to better understand our solar system. What they learn might even aid the search for Earth-like planets outside our solar system, narrowing down which ones might be able to support life.

4. Robot testing. 

InSight looks a bit like an oversized crane game: When it lands on Mars this November, its robotic arm will be used to grasp and move objects on another planet for the first time. And like any crane game, practice makes it easier to capture the prize.

Want to see what a Mars robot test lab is like? Take a 360 tour.

5. The gang’s all here. 

image

InSight will be traveling with a number of instruments, from cameras and antennas to the heat flow probe. Get up close and personal with each one in our instrument profiles.

6. Trifecta. 

image

InSight has three major parts that make up the spacecraft: Cruise Stage; Entry, Descent, and Landing System; and the Lander. Find out what each one does here.

7. Solar wings. 

Mars has weak sunlight because of its long distance from the Sun and a dusty, thin atmosphere. So InSight’s fan-like solar panels were specially designed to power InSight in this environment for at least one Martian year, or two Earth years.

8. Clues in the crust. 

image

Our scientists have found evidence that Mars’ crust is not as dense as previously thought, a clue that could help researchers better understand the Red Planet’s interior structure and evolution. “The crust is the end-result of everything that happened during a planet’s history, so a lower density could have important implications about Mars’ formation and evolution,” said Sander Goossens of our Goddard Space Flight Center in Greenbelt, Maryland.

9. Passengers. 

image

InSight won’t be flying solo—it will have two microchips on board inscribed with more than 2.4 million names submitted by the public. "It's a fun way for the public to feel personally invested in the mission," said Bruce Banerdt of our Jet Propulsion Laboratory, the mission's principal investigator. "We're happy to have them along for the ride."

10. Tiny CubeSats, huge firsts. 

image

The rocket that will loft InSight beyond Earth will also launch a separate NASA technology experiment: two mini-spacecraft called Mars Cube One, or MarCO. These suitcase-sized CubeSats will fly on their own path to Mars behindInSight. Their goal is to test new miniaturized deep space communication equipment and, if the MarCOs make it to Mars, may relay back InSight data as it enters the Martian atmosphere and lands. This will be a first test of miniaturized CubeSat technology at another planet, which researchers hope can offer new capabilities to future missions.

Check out the full version of ‘Solar System: 10 Thing to Know This Week’ HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

More Posts from Nasa and Others

7 years ago

Exploration in Extreme Environments: Under Water and in Outer Space

Living in the depths of the sea…to prepare for travel in deep space. 

Sounds strange, but that’s what our NEEMO expedition aims to do.

image

This 10-day NASA Extreme Environment Mission Operations (NEEMO) 22 expedition is slated to begin on June 18. NEEMO 22 will focus on both exploration spacewalks (or in this case waterwalks?) and objectives related to the International Space Station and deep space missions.

Analog (noun): is a situation on Earth that produces effects on the body similar to those experienced in space, both physical and mental/emotional. These studies help us prepare for long duration missions.

image

As an analog for future planetary science concepts and strategies, marine science also will be performed under the guidance of Florida International University’s marine science department.

image

NASA astronaut Kjell Lindgren will command the NEEMO 22 mission aboard the Aquarius laboratory, 62 feet below the ocean surface near Key Largo Florida. Lindgren was part of the space station Expeditions 44 and 45 in 2015, where he spent 141 days living and working in the extreme environment of space. He also conducted two spacewalks.

Fun Fact: These underwater explorers are referred to as “aquanauts”

image

Lindgren will be joined by ESA (European Space Agency) astronaut Pedro Duque, Trevor Graff, a Jacobs Engineering employee working as a planetary scientist at our Johnson Space Center; and research scientists Dom D’Agostino from the University of South Florida and the Florida Institute of Human and Machine Cognition.

While living underwater for 10 days, the crew will:

Test spaceflight countermeasure equipment

Validate technology for precisely tracking equipment in a habitat

Complete studies of body composition and sleep

Assess hardware sponsored by ESA that will help crew members evacuate someone who has been injured on a lunar spacewalk

image

Why do we use Analog Missions?

Analog missions prepare us for near-future exploration to asteroids, Mars and the moon. Analogs play a significant role in problem solving for spaceflight research.

Not all experiments can be done in space – there is not enough time, money, equipment and manpower

Countermeasures can be tested in analogs before trying them in space. Those that do not work in analogs will not be flown in space

Ground-based analog studies are completed more quickly and less expensively

For more information about the NEEMO mission, visit: https://www.nasa.gov/mission_pages/NEEMO/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

5 Ways Studying Water Will Help Us Better Understand Earth

Studying our home planet is just as powerful as exploring what’s beyond it.

Surface Water and Ocean Topography (SWOT) is a joint mission developed by NASA and the French space agency Centre National d’Études Spatiales (CNES), with contributions from the Canadian Space Agency and the UK Space Agency. It will track water on more than 90% of Earth’s surface and help communities, scientists, and researchers better understand this finite and vital resource. And it’s launching this month!

So how will SWOT help us better understand Earth? Here are 5 ways.

This is a GIF of SWOT in space as it passes over Earth and simulates the satellite becoming operational. The SWOT satellite deploys components that were stored for the launch, including extending its solar panels and deploys its booms and antennas.

SWOT will address some of the most pressing climate change questions of our time.

An important part of predicting our future climate is determining at what point Earth’s ocean water slows down its absorption of the excess heat in the atmosphere and starts releasing that heat back into the air, where it could accelerate global warming. SWOT will provide crucial information about this global heat exchange between the ocean and the atmosphere, enabling researchers to test and improve future climate forecasts.

The satellite will also offer insights to improve computer models for sea level rise projections and coastal flood forecasting.

Data from SWOT will additionally help scientists, engineers, water managers, and others better monitor drought conditions in lakes and reservoirs and improve flood forecasts for rivers.

This GIF is a short timelapse of a tree in the middle of a wetland type environment. As the timelapse begins water slowly starts to increase and by the end of the timelapse, the area around the tree is completely flooded.

SWOT is the first satellite mission that will observe nearly all water on the planet’s surface.

SWOT will measure the height of water in Earth’s lakes, rivers, reservoirs, and the ocean, giving scientists the ability to track the movement of water around the world.

SWOT’s eye in the sky will provide a truly global view of the water on more than 90% of Earth’s surface, enriching humankind’s understanding of how the ocean reacts to and influences climate change along with what potential hazards – including floods – lie ahead in different regions of the world.

This GIF was created from video footage of Alaska water ways and roads. It is a collection of scenes throughout Alaska including a large waterway next to road, a car traveling over a bridge, as well as various large rivers and creeks.

SWOT will see Earth’s water in higher definition than ever before.

Because everything is better in HD 😉, SWOT will view Earth’s ocean and freshwater bodies with unprecedented clarity compared to other satellites, much like a high-definition television delivers a picture far more detailed than older models. This means that SWOT will be able to “see” ocean features – like fronts and eddies – that are too small for current space-based instruments to detect. Those measurements will help improve researchers’ understanding of the ocean’s role in climate change.

Not only will the satellite show where – and how fast – sea level is rising, it will also reveal how coastlines around the world are changing. It will provide similar high-definition clarity for Earth’s lakes, rivers, and reservoirs, many of which remain a mystery to researchers, who aren’t able to outfit every water body with monitoring instruments.

Animation of SWOT as it flies over Florida and conducts its measurements of the water below. SWOT will collect data across a 75-mile (120-kilometer) wide swath, with a gap in the center for an altimetry track. This is an animation that shows the collection of data over the state of Florida, which is rich with rivers, lakes, and wetlands. Green and pink lights move downwards from the satellite to Earth, mimicking the satellite collecting data over the ocean and freshwater areas.

SWOT data will be used to help make decisions about our daily lives and livelihoods.

As climate change accelerates the water cycle, more communities around the world will be inundated with water while others won’t have enough. SWOT data will be used to monitor drought conditions and improve flood forecasts, providing essential information to water management agencies, disaster preparedness agencies, universities, civil engineers, and others who need to track water in their local areas. SWOT data also will help industries, like shipping, by providing measurements of water levels along rivers, as well as ocean conditions, including tides, currents, and storm surges.

This GIF shows catastrophic flooding in various communities throughout the world. The first scene includes several houses with water up to the roofs, almost covering the entire neighborhood. The next scene shows a road that is no longer accessible due to water flooding and covering entire segments of the road.

Finally … SWOT will pave the way for future Earth missions.

With its innovative technology and commitment to engaging a diverse community of people who plan to use data from the mission, SWOT is blazing a trail for future Earth-observing missions. SWOT’s data and the tools to support researchers in analyzing the information will be free and accessible. This will help to foster research and applications activities by a wide range of users, including scientists, resource managers, and others who in the past may not have had the opportunity to access this kind of information. Lessons learned from SWOT will lead to new questions and improvements for future missions, including our upcoming Earth System Observatory, a constellation of missions focused on studying key aspects of our home planet.

This is video footage of the SWOT satellite in a Thales Alenia Space clean room facility in Cannes, France. The shot is from faraway so you can see the entirety of the satellite and sheer size – 16.4 feet (5 meters) tall. Below the satellite is a group of about 15 team members admiring the satellite.

Keep track of the mission here. And make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

Local D.C. Artists Celebrate Mary W. Jackson's Legacy

On June 24, 2020, NASA announced the agency’s headquarters building in Washington, D.C., was to be named after Mary W. Jackson to celebrate her life and legacy. We collaborated with Events DC to create artwork inspired by Jackson’s story as the agency’s first Black female engineer.

Take a look at how six local female artists interpreted Jackson’s place in history through their individual creative lenses.

1. Trap Bob

Local D.C. Artists Celebrate Mary W. Jackson's Legacy

“To see Mary [W.] Jackson be so successful and to get the recognition that she deserves, it hits home for me in a couple ways.”

Tenbeete Solomon AKA Trap Bob is a visual artist, illustrator, and animator based in Washington, D.C.

“Art is so important across the board because it’s really a form of documentation,” says Trap Bob. “It’s creating a form of a history… that’s coming from the true essence of what people feel in the communities.”

2. Jamilla Okubo

Local D.C. Artists Celebrate Mary W. Jackson's Legacy

“People can relate to things that may seem foreign to them through imagery.”

Jamilla Okubo is an interdisciplinary artist exploring the intricacies of belonging to an American, Kenyan, and Trinidadian identity.

“I wanted to create a piece that represented and celebrated and honored Mary [W.] Jackson, to remember the work that she did,” says Okubo.

3. Tracie Ching

Local D.C. Artists Celebrate Mary W. Jackson's Legacy

“This is a figure who actually looks like us, represents us.”

Tracie Ching is an artist and self-taught illustrator working in Washington, D.C.

“The heroes and the figures that we had presented to us as kids didn’t ever look like me or my friends or the vast majority of the people around me,” says Ching.

4. Jennifer White-Johnson

Local D.C. Artists Celebrate Mary W. Jackson's Legacy

"To be even a Black artist making artwork about space — it’s because of her triumphs and her legacy that she left behind.”

Jennifer White-Johnson is an Afro-Latina, disabled designer, educator, and activist whose work explores the intersection of content and caregiving with an emphasis on redesigning ableist visual culture.

“My piece is… a take on autistic joy because my son is autistic," says White-Johnson. "And I really just wanted to show him… in a space where we often don’t see Black disabled kids being amplified.”

5. Kimchi Juice

Local D.C. Artists Celebrate Mary W. Jackson's Legacy

“In my art, I try to highlight really strong and empowering women."

Julia Chon, better known by her moniker “Kimchi Juice,” is a Washington, D.C.-based artist and muralist.

“As minority women, we are too often overlooked and under recognized for the work and time that we give," says Kimchi Juice. "And so to see Mary W. Jackson finally being given this recognition is fulfilling to me.”

6. OG Lullabies

“I wanted when one listens to it, to feel like there is no limit.”

OG Lullabies is a Washington D.C. songwriter, multi-instrumentalist, including violin and electronics.

“When you look back at history… art is the color or the sound in the emotions that encapsulated the moment,” says OG Lullabies. “It’s the real human experience that happens as time passes.”

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

How do you know if your solar eclipse glasses are legit?

Make sure to see that it has the ISO 12312-2 compliant and check that it’s from a trusted vendor. You can find a link here https://eclipse2017.nasa.gov/safety with more information and links to lists of trusted vendors. 


Tags
1 year ago

Hello! I am an avid lover of the cosmos and all things too grand for our minds to grasp. I was wondering, honestly, how do you cope with the pressure of your jobs, or say the scale of what is on your shoulders? It's quite an impressive thing you do, and it just gets me curious as to how you deal with the expectations that come with this type of job? Like, when you go home at night and eat your dinner, go to bed, do you have to practice mindfulness? Thanks for answering these! Love you guys!!!


Tags
4 years ago

From Apollo to Commercial Crew: Get To Know Historic Launch Pad 39A

Originally built for the massive Saturn V rockets that sent astronauts on Apollo missions to the Moon, Launch Complex 39A also served as one of the two launch pads used by the space shuttle. Between Apollo, Skylab, Apollo-Soyuz and the space shuttle, this launch pad has been the starting point for many of the nation’s most challenging and inspiring missions.

image

In 2014, SpaceX signed a property agreement with NASA for use and operation of the launch complex for 20 years, and the company modified the facility to prepare for the processing and launch of its Falcon 9 and Falcon Heavy rockets.

image

The SpaceX Falcon 9 rocket carrying the company’s Crew Dragon on its Demo-2 flight test to the International Space Station with NASA astronauts Robert Behnken and Douglas Hurley will lift off from the same historic site where astronauts first launched to the moon. Launch Complex 39A at NASA’s Kennedy Space Center in Florida is also the site of dozens of space shuttle launches that helped build the orbital laboratory.

Launch Complexes 39A and B were constructed in the 1960s. Both launch pads have a long history of supporting launches for the Apollo and Space Shuttle Programs. Launch Pad 39A was the launch site for 11 Saturn V Apollo missions, including Apollo 11, the first Moon landing. The pad also was the launch site for 82 space shuttle missions, including STS-1, the first shuttle launch, the STS-125 final servicing mission for the Hubble Space Telescope, and STS-135, the final shuttle mission.

image

After the space shuttle was retired in 2011, we began the process to transform Kennedy Space Center from a historically government-only launch facility into a multi-user spaceport for both government and commercial use. On April 14, 2014, the agency signed a property agreement with SpaceX for use of the launch site for the next 20 years.

image

SpaceX upgraded and modified the launch pad to support its Falcon 9 and Falcon Heavy rockets. The company also built a horizontal processing hangar at the base of the pad to perform final vehicle integration prior to flight. The first SpaceX launch from the pad was the company’s 10th commercial resupply services (CRS-10) mission for us. A SpaceX Falcon 9 launched a Dragon cargo spacecraft on CRS-10 on Feb. 19, 2017. The Dragon delivered about 5,500 pounds of supplies to the space station, including the Stratospheric Aerosol and Gas Experiment (SAGE) III instrument to further study ozone in the Earth’s atmosphere. Combined with SpaceX, we’ve launched more than 100 missions from Pad 39A.

image

Because of our partnership with SpaceX within our agency’s Commercial Crew Program, Launch Complex 39A will once again be the site of crewed missions to the space station.

🚀 TUNE IN starting at 12:15 p.m. EDT on Wednesday, May 27 as NASA and SpaceX launch astronauts Robert Behnken and Douglas Hurley to the International Space Station aboard the Crew Dragon spacecraft: www.nasa.gov.live.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

@barnabasthebarmy: How do you deal with being cooped up with other people for so long?


Tags
9 years ago

What Happened to Mars?

Billions of years ago, Mars was a very different world. Liquid water flowed in long rivers that emptied into lakes and shallow seas. A thick atmosphere blanketed the planet and kept it warm.

image

Today, Mars is bitter cold. The Red Planet’s thin and wispy atmosphere provides scant cover for the surface below.

image

Our MAVEN Mission

The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is part of our Mars Scout program. This spacecraft launched in November 2013, and is exploring the Red Planet’s upper atmosphere, ionosphere and interactions with the sun and solar wind.

image

The purpose of the MAVEN mission is to determine the state of the upper atmosphere of Mars, the processes that control it and the overall atmospheric loss that is currently occurring. Specifically, MAVEN is exploring the processes through which the top of the Martian atmosphere can be lost to space. Scientists think that this loss could be important in explaining the changes in the climate of Mars that have occurred over the last four billion years.

New Findings

Today, Nov. 5, we will share new details of key science findings from our ongoing exploration of Mars during a news briefing at 2 p.m. EDT. This event will be broadcast live on NASA Television. Have questions? Use #askNASA during the briefing.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
7 years ago

The Daredevil Spacecraft That Will Touch the Sun

In the summer of 2018, we’re launching Parker Solar Probe, a spacecraft that will get closer to the Sun than any other in human history.

image

Parker Solar Probe will fly directly through the Sun’s atmosphere, called the corona. Getting better measurements of this region is key to understanding our Sun. For instance, the Sun releases a constant outflow of solar material, called the solar wind. We think the corona is where this solar wind is accelerated out into the solar system, and Parker Solar Probe’s measurements should help us pinpoint how that happens.  

image

The solar wind, along with other changing conditions on the Sun and in space, can affect Earth and are collectively known as space weather. Space weather can trigger auroras, create problems with satellites, cause power outages (in extreme cases), and disrupt our communications signals. That’s because space weather interacts with Earth’s upper atmosphere, where signals like radio and GPS travel from place to place.

image

Parker Solar Probe is named after pioneering physicist Gene Parker. In the 1950s, Parker proposed a number of concepts about how stars — including our Sun — give off energy. He called this cascade of energy the solar wind. Parker also theorized an explanation for the superheated solar atmosphere, the corona, which is hotter than the surface of the Sun itself.

image

Getting the answers to our questions about the solar wind and the Sun’s energetic particles is only possible by sending a probe right into the furnace of the Sun’s corona, where the spacecraft can reach 2,500 degrees Fahrenheit. Parker Solar Probe and its four suites of instruments – studying magnetic and electric fields, energetic particles, and the solar wind – will be protected from the Sun’s enormous heat by a 4.5-inch-thick carbon-composite heat shield.

Over the course of its seven-year mission, Parker Solar Probe will make two dozen close approaches to the Sun, continuously breaking its own records and sending back unprecedented science data.

image

Getting close to the Sun is harder than you might think, since the inertia of a spacecraft launched from Earth will naturally carry it in repeated orbits on roughly the same path. To nudge the orbit closer to the Sun on successive trips, Parker Solar Probe will use Venus’ gravity.

This is a technique called a gravity assist, and it’s been used by Voyager, Cassini, and OSIRIS-REx, among other missions. Though most missions use gravity assists to speed up, Parker Solar Probe is using Venus’ gravity to slow down. This will let the spacecraft fall deeper into the Sun’s gravity and get closer to our star than any other spacecraft in human history.

image

Get a behind-the-scenes view of the Parker Solar Probe under construction in a clean room on the NASA Sun Science Facebook page.

image

Keep up with all the latest on Parker Solar Probe at nasa.gov/solarprobe or on Twitter @NASASun.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Hey, Kate! What would you say/what advice would you give to your younger self? ✨


Tags
Loading...
End of content
No more pages to load
  • oneminutetospace
    oneminutetospace reblogged this · 3 years ago
  • rvhappy
    rvhappy liked this · 3 years ago
  • ahhihhuhhehhohhshit
    ahhihhuhhehhohhshit liked this · 4 years ago
  • jessicares
    jessicares liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags