Exploration In Extreme Environments: Under Water And In Outer Space

Exploration in Extreme Environments: Under Water and in Outer Space

Living in the depths of the sea…to prepare for travel in deep space. 

Sounds strange, but that’s what our NEEMO expedition aims to do.

image

This 10-day NASA Extreme Environment Mission Operations (NEEMO) 22 expedition is slated to begin on June 18. NEEMO 22 will focus on both exploration spacewalks (or in this case waterwalks?) and objectives related to the International Space Station and deep space missions.

Analog (noun): is a situation on Earth that produces effects on the body similar to those experienced in space, both physical and mental/emotional. These studies help us prepare for long duration missions.

image

As an analog for future planetary science concepts and strategies, marine science also will be performed under the guidance of Florida International University’s marine science department.

image

NASA astronaut Kjell Lindgren will command the NEEMO 22 mission aboard the Aquarius laboratory, 62 feet below the ocean surface near Key Largo Florida. Lindgren was part of the space station Expeditions 44 and 45 in 2015, where he spent 141 days living and working in the extreme environment of space. He also conducted two spacewalks.

Fun Fact: These underwater explorers are referred to as “aquanauts”

image

Lindgren will be joined by ESA (European Space Agency) astronaut Pedro Duque, Trevor Graff, a Jacobs Engineering employee working as a planetary scientist at our Johnson Space Center; and research scientists Dom D’Agostino from the University of South Florida and the Florida Institute of Human and Machine Cognition.

While living underwater for 10 days, the crew will:

Test spaceflight countermeasure equipment

Validate technology for precisely tracking equipment in a habitat

Complete studies of body composition and sleep

Assess hardware sponsored by ESA that will help crew members evacuate someone who has been injured on a lunar spacewalk

image

Why do we use Analog Missions?

Analog missions prepare us for near-future exploration to asteroids, Mars and the moon. Analogs play a significant role in problem solving for spaceflight research.

Not all experiments can be done in space – there is not enough time, money, equipment and manpower

Countermeasures can be tested in analogs before trying them in space. Those that do not work in analogs will not be flown in space

Ground-based analog studies are completed more quickly and less expensively

For more information about the NEEMO mission, visit: https://www.nasa.gov/mission_pages/NEEMO/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

6 years ago

Parker Solar Probe is Go for Launch

Tomorrow, Aug. 11, we're launching a spacecraft to touch the Sun.

image

The first chance to launch Parker Solar Probe is 3:33 a.m. EDT on Aug. 11 from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. Launch coverage on NASA TV starts at 3 a.m. EDT at nasa.gov/live.

After launch, Parker Solar Probe begins its daring journey to the Sun’s atmosphere, or corona, going closer to the Sun than any spacecraft in history and facing brutal heat and radiation.

Though Parker Solar Probe weighs a mere 1,400 pounds — pretty light for a spacecraft — it's launching aboard one of the world's most powerful rockets, a United Launch Alliance Delta IV Heavy with a third stage added.

image

Even though you might think the Sun's massive means things would just fall into it, it's surprisingly difficult to actually go there. Any object leaving Earth starts off traveling at about 67,000 miles per hour, same as Earth — and most of that is in a sideways direction, so you have to shed most of that sideways speed to make it to the Sun. All that means that it takes 55 times more launch energy to go to the Sun than it does to go to Mars. On top of its powerful launch vehicle, Parker Solar Probe will use seven Venus gravity assists to shed sideways speed.

Even though Parker Solar Probe will lose a lot of sideways speed, it'll still be going incredibly fast as its orbit draws closer to the Sun throughout its seven-year mission. At its fastest, Parker Solar Probe will travel at 430,000 miles per hour — fast enough to get from Philadelphia to Washington, D.C. in one second — setting the record for the fastest spacecraft in history.

image

But the real challenge was to keep the spacecraft from frying once it got there.

We’ve always wanted to send a mission to the corona, but we literally haven’t had the technology that can protect a spacecraft and its instruments from its scorching heat. Only recent advances have enabled engineers to build a heat shield that will protect the spacecraft on this journey of extremes — a tricky feat that requires withstanding the Sun’s intense radiation on the front and staying cool at the back, so the spacecraft and instruments can work properly.

image

The 4.5-inches-thick heat shield is built like a sandwich. There’s a thin layer of carbon material like you might find in your golf clubs or tennis rackets, carbon foam, and then another thin piece of carbon-carbon on the back. Even while the Sun-facing side broils at 2,500 degrees Fahrenheit, the back of the shield will remain a balmy 85 degrees — just above room temperature. There are so few particles in this region that it's a vacuum, so blocking the Sun's radiation goes a long way towards keeping the spacecraft cool.

Parker Solar Probe is also our first mission to be named after a living individual: Dr. Eugene Parker, famed solar physicist who in 1958 first predicted the existence of the solar wind.

image

"Solar wind" is what Dr. Parker dubbed the stream of charged particles that flows constantly from the Sun, bathing Earth and our entire solar system in the Sun’s magnetic fields. Parker Solar Probe’s flight right through the corona allows it to observe the birth of the very solar wind that Dr. Parker predicted, right as it speeds up and over the speed of sound.  

image

The corona is where solar material is heated to millions of degrees and where the most extreme eruptions on the Sun occur, like solar flares and coronal mass ejections, which fling particles out to space at incredible speeds near the speed of light. These explosions can also spark space weather storms near Earth that can endanger satellites and astronauts, disrupt radio communications and, at their most severe, trigger power outages.

image

Thanks to Parker Solar Probe’s landmark mission, solar scientists will be able to see the objects of their study up close and personal for the very first time.

Up until now, all of our studies of the corona have been remote — that is, taken from a distance, rather than at the mysterious region itself. Scientists have been very creative to glean as much as possible from their remote data, but there’s nothing like actually sending a probe to the corona to see what’s going on.

image

And scientists aren’t the only ones along for the adventure — Parker Solar Probe holds a microchip carrying the names of more than 1.1 million people who signed up to send their name to the Sun. This summer, these names and 1,400 pounds of science equipment begin their journey to the center of our solar system.

Three months later in November 2018, Parker Solar Probe makes its first close approach to the Sun, and in December, it will send back the data. The corona is one of the last places in the solar system where no spacecraft has visited before; each observation Parker Solar Probe makes is a potential discovery.

Stay tuned — Parker Solar Probe is about to take flight.

Keep up with the latest on the mission at nasa.gov/solarprobe or follow us on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
9 years ago

20 Years of the Solar and Heliospheric Observatory

The Solar and Heliospheric Observatory, SOHO for short, has captured the imagination of scientists and the public alike for two decades now. We teamed up with the European Space Agency (ESA) on SOHO, which observes the sun from space. It was launched 20 years ago this week, on Dec. 2, 1995, with the mission to study the internal structure of our neighborhood star, its atmosphere and the origin of the solar wind. SOHO sends spectacular data daily, and has led scientists to a wealth of understanding.

Here are the top 5 things you need to know about SOHO, the sun and other solar observation missions:

1. SOHO Set Out for Space with an Ambitious Mission

image

SOHO was designed to answer three fundamental scientific questions about the sun: What are the structure and dynamics of the solar interior? Why does the solar corona exist and how is it heated to such an extremely high temperature? Where is the solar wind produced and how is it accelerated? Clues about the solar interior come from studying seismic waves that appear as ripples on the sun's surface, a technique called helioseismology.

2. SOHO Enjoys a Great View

20 Years Of The Solar And Heliospheric Observatory

SOHO commands an uninterrupted view of the sun, while always staying within easy communication range of controllers at home. The space-based observatory moves around the sun in step with the Earth, by slowly orbiting around a unique point in space called the First Lagrangian Point (L1). There, the combined gravity of the Earth and sun keep SOHO in a position that's always between the sun and the Earth. The L1 point is about 1 million miles (about 1.5 million kilometers) away from Earth (about four times the distance to the Moon).

3. Bonus Discoveries: Lots of Comets

image

Besides watching the sun, SOHO has become the most prolific discoverer of comets in astronomical history. In September 2015, SOHO found its 3000th comet. Sometimes the spacecraft's instruments capture comets plunging to their death as they collide with the sun.

4. Extra Innings

image

SOHO was meant to operate until 1998, but it was so successful that ESA and NASA decided to prolong its life several times and endorsed several mission extensions. Because of this, the mission has been able to observe an entire 11-year solar cycle and much of the next.

5. Keep Your Eye (Safely) on the Sun

image

You can see what SOHO sees, almost in real time. The latest images from the spacecraft, updated several times daily, are available online. Take a look HERE. 

Also, make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
LIFTOFF!

LIFTOFF!

On July 7, three crew members launched from Earth; headed to their new home on the International Space Station. 

Crewmembers Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) will spend approximately four months on the orbital complex, returning to Earth in October. 

Photo Credit: (NASA/Bill Ingalls)

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

The Special Ingredients…of Earth!

image

With its blue skies, puffy white clouds, warm beaches and abundant life, planet Earth is a pretty special place. A quick survey of the solar system reveals nothing else like it. But how special is Earth, really?

image

One way to find out is to look for other worlds like ours elsewhere in the galaxy. Astronomers using our Kepler Space Telescope and other observatories have been doing just that! 

image

In recent years they’ve been finding other planets increasingly similar to Earth, but still none that appear as hospitable as our home world. For those researchers, the search goes on.

image

Another group of researchers have taken on an entirely different approach. Instead of looking for Earth-like planets, they’ve been looking for Earth-like ingredients. Consider the following:

image

Our planet is rich in elements such as carbon, oxygen, iron, magnesium, silicon and sulfur…the stuff of rocks, air, oceans and life. Are these elements widespread elsewhere in the universe? 

image

To find out, a team of astronomers led by the Japanese Aerospace Exploration Agency (JAXA), with our participation, used Suzaku. This Japanese X-ray satellite was used to survey a cluster of galaxies located in the direction of the constellation Virgo.

image

The Virgo cluster is a massive swarm of more than 2,000 galaxies, many similar in appearance to our own Milky Way, located about 54 million light years away. The space between the member galaxies is filled with a diffuse gas, so hot that it glows in X-rays. Instruments onboard Suzaku were able to look at that gas and determine which elements it’s made of.

image

Reporting their findings in the Astrophysical Journal Letters, they reported findings of iron, magnesium, silicon and sulfur throughout the Virgo galaxy cluster. The elemental ratios are constant throughout the entire volume of the cluster, and roughly consistent with the composition of the sun and most of the stars in our own galaxy.

image

When the Universe was born in the Big Bang 13.8 billon years ago, elements heavier than carbon were rare. These elements are present today, mainly because of supernova explosions. 

image

Massive stars cook elements such as, carbon, oxygen, iron, magnesium, silicon and sulfur in their hot cores and then spew them far and wide when the stars explode.

image

According to the observations of Suzaku, the ingredients for making sun-like stars and Earth-like planets have been scattered far and wide by these explosions. Indeed, they appear to be widespread in the cosmos. The elements so important to life on Earth are available on average and in similar relative proportions throughout the bulk of the universe. In other words, the chemical requirements for life are common.

image

Earth is still special, but according to Suzaku, there might be other special places too. Suzaku recently completed its highly successful mission.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Solar System 10 Things: Looking Back at Pluto

In July 2015, we saw Pluto up close for the first time and—after three years of intense study—the surprises keep coming. “It’s clear,” says Jeffery Moore, New Horizons’ geology team lead, “Pluto is one of the most amazing and complex objects in our solar system.”

1. An Improving View

image

These are combined observations of Pluto over the course of several decades. The first frame is a digital zoom-in on Pluto as it appeared upon its discovery by Clyde Tombaugh in 1930. More frames show of Pluto as seen by the Hubble Space Telescope. The final sequence zooms in to a close-up frame of Pluto taken by our New Horizons spacecraft on July 14, 2015.

2. The Heart

image

Pluto’s surface sports a remarkable range of subtle colors are enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a complex geological and climatological story that scientists have only just begun to decode. The image resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). Zoom in on the full resolution image on a larger screen to fully appreciate the complexity of Pluto’s surface features.

3. The Smiles

image

July 14, 2015: New Horizons team members Cristina Dalle Ore, Alissa Earle and Rick Binzel react to seeing the spacecraft's last and sharpest image of Pluto before closest approach.

4. Majestic Mountains

Solar System 10 Things: Looking Back At Pluto

Just 15 minutes after its closest approach to Pluto, the New Horizons spacecraft captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto's horizon. The backlighting highlights more than a dozen layers of haze in Pluto's tenuous atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide.

5. Icy Dunes

image

Found near the mountains that encircle Pluto’s Sputnik Planitia plain, newly discovered ridges appear to have formed out of particles of methane ice as small as grains of sand, arranged into dunes by wind from the nearby mountains.

6. Glacial Plains

image

The vast nitrogen ice plains of Pluto’s Sputnik Planitia – the western half of Pluto’s “heart”—continue to give up secrets. Scientists processed images of Sputnik Planitia to bring out intricate, never-before-seen patterns in the surface textures of these glacial plains.

7. Colorful and Violent Charon

image

High resolution images of Pluto’s largest moon, Charon, show a surprisingly complex and violent history. Scientists expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more.

8. Ice Volcanoes

image

One of two potential cryovolcanoes spotted on the surface of Pluto by the New Horizons spacecraft. This feature, known as Wright Mons, was informally named by the New Horizons team in honor of the Wright brothers. At about 90 miles (150 kilometers) across and 2.5 miles (4 kilometers) high, this feature is enormous. If it is in fact an ice volcano, as suspected, it would be the largest such feature discovered in the outer solar system.

9. Blue Rays

Solar System 10 Things: Looking Back At Pluto

Pluto's receding crescent as seen by New Horizons at a distance of 120,000 miles (200,000 kilometers). Scientists believe the spectacular blue haze is a photochemical smog resulting from the action of sunlight on methane and other molecules in Pluto's atmosphere. These hydrocarbons accumulate into small haze particles, which scatter blue sunlight—the same process that can make haze appear bluish on Earth.

10. Encore

image

On Jan. 1, 2019, New Horizons will fly past a small Kuiper Belt Object named MU69 (nicknamed Ultima Thule)—a billion miles (1.5 billion kilometers) beyond Pluto and more than four billion miles (6.5 billion kilometers) from Earth. It will be the most distant encounter of an object in history—so far—and the second time New Horizons has revealed never-before-seen landscapes.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago
Hello There 👋

Hello there 👋

Welcome to Mindful Monday. It’s good to see you 🧘

For our second week, we’ve got an offer of mindfulness y’all can’t POSSIBLY refuse: join us as we tour the rings of Saturn with NASA! Turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of our cosmic neighborhood 🌌

Sounds good, right? Of course, it does. You can watch even more Space Out episodes on NASA+, a new, no-cost, ad-free streaming service.

Why not give it a try? Just a few minutes this Monday morning can make all the difference to your entire week, as @nasa helps to bring mindfulness from the stars and straight to you. 

🧘WATCH: Space Out with NASA: Rings of Saturn 12/04 at 1pm EST🧘

8 years ago

Did you have an innate talent for math? Or did you struggle and practiced until you understood it? I wanted to become an aerospace engineer but after taking a class I decided psychology was more suited for me because I struggled with equations but thrived with the psychological terms

Anything you don’t know is hard until you learn it. There are a few geniuses in the world, but most people study and work hard to learn what they love. Even the smartest amongst you actually put in a lot of time to learn the things that they want, and no one is an exception. You have to put in the time.


Tags
5 years ago

5 of Your Fermi Gamma-ray Space Telescope Questions Answered

The Fermi Gamma-ray Space Telescope is a satellite in low-Earth orbit that detects gamma rays from exotic objects like black holes, neutron stars and fast-moving jets of hot gas. For 11 years Fermi has seen some of the highest-energy bursts of light in the universe and is helping scientists understand where gamma rays come from.

Confused? Don’t be! We get a ton of questions about Fermi and figured we'd take a moment to answer a few of them here.

1. Who was this Fermi guy?

The Fermi telescope was named after Enrico Fermi in recognition of his work on how the tiny particles in space become accelerated by cosmic objects, which is crucial to understanding many of the objects that his namesake satellite studies.

Enrico Fermi was an Italian physicist and Nobel Prize winner (in 1938) who immigrated to the United States to be a professor of physics at Columbia University, later moving to the University of Chicago.

image

Original image courtesy Argonne National Laboratory

Over the course of his career, Fermi was involved in many scientific endeavors, including the Manhattan Project, quantum theory and nuclear and particle physics. He even engineered the first-ever atomic reactor in an abandoned squash court (squash is the older, English kind of racquetball) at the University of Chicago.

There are a number of other things named after Fermi, too: Fermilab, the Enrico Fermi Nuclear Generating Station, the Enrico Fermi Institute and more. (He’s kind of a big deal in the physics world.)

image

Fermi even had something to say about aliens! One day at lunch with his buddies, he wondered if extraterrestrial life existed outside our solar system, and if it did, why haven't we seen it yet? His short conversation with friends sparked decades of research into this idea and has become known as the Fermi Paradox — given the vastness of the universe, there is a high probability that alien civilizations exist out there, so they should have visited us by now.  

2. So, does the Fermi telescope look for extraterrestrial life?

No. Although both are named after Enrico Fermi, the Fermi telescope and the Fermi Paradox have nothing to do with one another.

image

Fermi does not look for aliens, extraterrestrial life or anything of the sort! If aliens were to come our way, Fermi would be no help in identifying them, and they might just slip right under Fermi’s nose. Unless, of course, those alien spacecraft were powered by processes that left behind traces of gamma rays.

image

Fermi detects gamma rays, the highest-energy form of light, which are often produced by events so far away the light can take billions of years to reach Earth. The satellite sees pulsars, active galaxies powered by supermassive black holes and the remnants of exploding stars. These are not your everyday stars, but the heavyweights of the universe. 

3. Does the telescope shoot gamma rays?

No. Fermi DETECTS gamma rays using its two instruments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM).

The LAT sees about one-fifth of the sky at a time and records gamma rays that are millions of times more energetic than visible light. The GBM detects lower-energy emissions, which has helped it identify more than 2,000 gamma-ray bursts – energetic explosions in galaxies extremely far away.

image

The highest-energy gamma ray from a gamma-ray burst was detected by Fermi’s LAT, and traveled 3.8 billion light-years to reach us from the constellation Leo.

4. Will gamma rays turn me into a superhero?

Nope. In movies and comic books, the hero has a tragic backstory and a brush with death, only to rise out of some radioactive accident stronger and more powerful than before. In reality, that much radiation would be lethal.

image

In fact, as a form of radiation, gamma rays are dangerous for living cells. If you were hit with a huge amount of gamma radiation, it could be deadly — it certainly wouldn’t be the beginning of your superhero career.

5. That sounds bad…does that mean if a gamma-ray burst hit Earth, it would wipe out the planet and destroy us all?

Thankfully, our lovely planet has an amazing protector from gamma radiation: an atmosphere. That is why the Fermi telescope is in orbit; it’s easier to detect gamma rays in space!

image

Gamma-ray bursts are so far away that they pose no threat to Earth. Fermi sees gamma-ray bursts because the flash of gamma rays they release briefly outshines their entire home galaxies, and can sometimes outshine everything in the gamma-ray sky.

image

If a habitable planet were too close to one of these explosions, it is possible that the jet emerging from the explosion could wipe out all life on that planet. However, the probability is extremely low that a gamma-ray burst would happen close enough to Earth to cause harm. These events tend to occur in very distant galaxies, so we’re well out of reach.

image

We hope that this has helped to clear up a few misconceptions about the Fermi Gamma-ray Space Telescope. It’s a fantastic satellite, studying the craziest extragalactic events and looking for clues to unravel the mysteries of our universe!

Now that you know the basics, you probably want to learn more! Follow the Fermi Gamma-ray Space Telescope on Twitter (@NASAFermi) or Facebook (@nasafermi), and check out more awesome stuff on our Fermi webpage.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

These 9 Companies Could Help Us Send the Next Robotic Landers to the Moon

We sent the first humans to land on the Moon in 1969. Since then, only of 12 men have stepped foot on the lunar surface – but we left robotic explorers behind to continue gathering science data. And now, we’re preparing to return. Establishing a sustained presence on and near the Moon will help us learn to live off of our home planet and prepare for travel to Mars.

image

To help establish ourselves on and near the Moon, we are working with a few select American companies. We will buy space on commercial robotic landers, along with other customers, to deliver our payloads to the lunar surface. We’re even developing lunar instruments and tools that will fly on missions as early as 2019!

image

Through partnerships with American companies, we are leading a flexible and sustainable approach to deep space missions. These early commercial delivery missions will also help inform new space systems we build to send humans to the Moon in the next decade. Involving American companies and stimulating the space market with these new opportunities to send science instruments and new technologies to deep space will be similar to how we use companies like Northrop Grumman and SpaceX to send cargo to the International Space Station now. These selected companies will provide a rocket and cargo space on their robotic landers for us (and others!) to send science and technology to our nearest neighbor.

So who are these companies that will get to ferry science instruments and new technologies to the Moon?

Here’s a digital “catalogue” of the organizations and their spacecraft that will be available for lunar services over the next decade:

Astrobotic Technology, Inc.

Pittsburg, PA

image

Deep Space Systems

Littleton, CO

image

Firefly Aerospace, Inc.

Cedar Park, TX

image

Intuitive Machines, LLC

Houston, TX

image

Lockheed Martin Space

Littleton, CO

image

Masten Space Systems, Inc.

Mojave, CA

image

Moon Express, Inc.

Cape Canaveral, FL

image

Orbit Beyond, Inc.

Edison, NJ

image

Draper, Inc.

Cambridge, MA

image

We are thrilled to be working with these companies to enable us to investigate the Moon in new ways. In order to expand humanity’s presence beyond Earth, we need to return to the Moon before we go to Mars.

The Moon helps us to learn how to live and work on another planetary body while being only three days away from home – instead of several months. The Moon also holds enormous potential for testing new technologies, like prospecting for water ice and turning it into drinking water, oxygen and rocket fuel. Plus, there’s so much science to be done!

image

The Moon can help us understand the early history of the solar system, how planets migrated to their current formation and much more. Understanding how the Earth-Moon system formed is difficult because those ancient rocks no longer exist here on Earth. They have been recycled by plate tectonics, but the Moon still has rocks that date back to the time of its formation! It’s like traveling to a cosmic time machine!

Join us on this exciting journey as we expand humanity’s presence beyond Earth.

Learn more about the Moon and all the surprises it may hold: https://moon.nasa.gov

Find out more about today’s announcement HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Solar System: 10 Things to Know

All About Ice

1. Earth's Changing Cryosphere

image

This year, we will launch two satellite missions that will increase our understanding of Earth's frozen reaches. Snow, ice sheets, glaciers, sea ice and permafrost, known as the cryosphere, act as Earth's thermostat and deep freeze, regulating temperatures by reflecting heat from the Sun and storing most of our fresh water.

2. GRACE-FO: Building on a Legacy and Forging Ahead

image

The next Earth science satellites set to launch are twins! The identical satellites of the GRACE Follow-On mission will build on the legacy of their predecessor GRACE by also tracking the ever-changing movement of water around our planet, including Earth's frozen regions. GRACE-FO, a partnership between us and the German Research Center for Geosciences (GFZ), will provide critical information about how the Greenland and Antarctic ice sheets are changing. GRACE-FO, working together, will measure the distance between the two satellites to within 1 micron (much less than the width of a human hair) to determine the mass below. 

Solar System: 10 Things To Know

Greenland has been losing about 280 gigatons of ice per year on average, and Antarctica has lost almost 120 gigatons a year with indications that both melt rates are increasing. A single gigaton of water would fill about 400,000 Olympic-sized swimming pools; each gigaton represents a billion tons of water.

3. ICESat-2: 10,000 Laser Pulses a Second

image

In September, we will launch ICESat-2, which uses a laser instrument to precisely measure the changing elevation of ice around the world, allowing scientists to see whether ice sheets and glaciers are accumulating snow and ice or getting thinner over time. ICESat-2 will also make critical measurements of the thickness of sea ice from space. Its laser instrument sends 10,000 pulses per second to the surface and will measure the photons' return trip to satellite. The trip from ICESat-2 to Earth and back takes about 3.3 milliseconds.

4. Seeing Less Sea Ice

image

Summertime sea ice in the Arctic Ocean now routinely covers about 40% less area than it did in the late 1970s, when continuous satellite observations began. This kind of significant change could increase the rate of warming already in progress and affect global weather patterns.

5. The Snow We Drink

image

In the western United States, 1 in 6 people rely on snowpack for water. Our field campaigns such as the Airborne Snow Observatory and SnowEx seek to better understand how much water is held in Earth's snow cover, and how we could ultimately measure this comprehensively from space.

6. Hidden in the Ground

image

Permafrost - permanently frozen ground in the Arctic that contains stores of heat-trapping gases such as methane and carbon dioxide - is thawing at faster rates than previously observed. Recent studies suggest that within three to four decades, this thawing could be releasing enough greenhouse gases to make Arctic permafrost a net source of carbon dioxide rather than a sink. Through airborne and field research on missions such as CARVE and ABoVE - the latter of which will put scientists back in the field in Alaska and Canada this summer - our scientists are trying to improve measurements of this trend in order to better predict global impact.

7. Breaking Records Over Cracking Ice 

image

Last year was a record-breaking one for Operation IceBridge, our aerial survey of polar ice. For the first time in its nine-year history, the mission carried out seven field campaigns in the Arctic and Antarctic in a single year. In total, the IceBridge scientists and instruments flew over 214,000 miles, the equivalent of orbiting the Earth 8.6 times at the equator. 

Solar System: 10 Things To Know

On March 22, we completed the first IceBridge flight of its spring Arctic campaign with a survey of sea ice north of Greenland. This year marks the 10th Arctic spring campaign for IceBridge. The flights continue until April 27 extending the mission's decade-long mapping of the fastest-changing areas of the Greenland Ice Sheet and measuring sea ice thickness across the western Arctic basin.

8. OMG

image

Researchers were back in the field this month in Greenland with our Oceans Melting Greenland survey. The airborne and ship-based mission studies the ocean's role in melting Greenland's ice. Researchers examine temperatures, salinity and other properties of North Atlantic waters along the more than 27,000 miles (44,000 km) of jagged coastline.

9. DIY Glacier Modeling

image

Computer models are critical tools for understanding the future of a changing planet, including melting ice and rising seas. Our new sea level simulator lets you bury Alaska's Columbia glacier in snow, and, year by year, watch how it responds. Or you can melt the Greenland and Antarctic ice sheets and trace rising seas as they inundate the Florida coast.

10. Ice Beyond Earth

image

Ice is common in our solar system. From ice packed into comets that cruise the solar system to polar ice caps on Mars to Europa and Enceladus-the icy ocean moons of Jupiter and Saturn-water ice is a crucial ingredient in the search for life was we know it beyond Earth.

Read the full version of this week’s 10 Things to Know HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • murciegalito
    murciegalito liked this · 4 years ago
  • somefishdood
    somefishdood liked this · 5 years ago
  • talasssa
    talasssa liked this · 5 years ago
  • hippiebydayrickymartin
    hippiebydayrickymartin reblogged this · 5 years ago
  • oktawiaderybowska-dyplom
    oktawiaderybowska-dyplom reblogged this · 5 years ago
  • stickygreentree
    stickygreentree reblogged this · 5 years ago
  • yesiamlogophile
    yesiamlogophile liked this · 6 years ago
  • highspeedlove
    highspeedlove liked this · 6 years ago
  • manyblinkinglights
    manyblinkinglights liked this · 6 years ago
  • panicpluspoison
    panicpluspoison liked this · 6 years ago
  • hxhhasmysoul
    hxhhasmysoul liked this · 6 years ago
  • yandereleorio
    yandereleorio reblogged this · 6 years ago
  • mp3sea
    mp3sea reblogged this · 6 years ago
  • crypto-phenom
    crypto-phenom reblogged this · 7 years ago
  • tinynightmarewasteland
    tinynightmarewasteland liked this · 7 years ago
  • historydork
    historydork reblogged this · 7 years ago
  • seventh-generation
    seventh-generation reblogged this · 7 years ago
  • seventh-generation
    seventh-generation liked this · 7 years ago
  • mistermaf
    mistermaf liked this · 7 years ago
  • leadingemallory-blog
    leadingemallory-blog liked this · 7 years ago
  • calcconverter
    calcconverter liked this · 7 years ago
  • your-neighborhood-assbutt
    your-neighborhood-assbutt liked this · 7 years ago
  • stickygreentree
    stickygreentree reblogged this · 7 years ago
  • chi3zangngoc-blog
    chi3zangngoc-blog liked this · 7 years ago
  • stormbear
    stormbear reblogged this · 7 years ago
  • brendacarolinetomaz-blog
    brendacarolinetomaz-blog liked this · 7 years ago
  • the-secret-life-of-ravens
    the-secret-life-of-ravens reblogged this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags