I love supermassive black holes!!!
Expect this in the chapter about black holes lol
The relationship between SBHs and their host galaxies are so cool!
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
AAS NOVA
A Young Population of Hidden Jets
By Susanna Kohler
Looking for a fireworks show this 4th of July? Try checking out the distant universe, where powerful jets flung from supermassive black holes slam into their surroundings, lighting up the sky.
Though these jets are hidden behind shrouds of gas and dust, a new study has now revealed some of these young powerhouses.
A Galaxy–Black-Hole Connection
In the turbulent centers of active galaxies (active galactic nuclei, or AGN), gas and dust rains onto supermassive black holes of millions to billions of solar masses, triggering dramatic jets that plow into the surrounding matter and light up across the electromagnetic spectrum.
The growth of a supermassive black hole is thought to be closely tied to the evolution of its host galaxy, and feedback like these jets may provide that link. As the jets collide with the gas and dust surrounding the galaxy’s nucleus, they can trigger a range of effects — from shock waves that drive star formation, to gas removal that quenches star formation.
To better understand the connections between supermassive black holes and their host galaxies, we’d especially like to observe AGN at a time known as Cosmic Noon. This period occurred around 10 billion years ago and marks a time when star formation and supermassive black hole growth was at its strongest.
The Hidden World of Cosmic Noon
But there’s a catch: around Cosmic Noon, galaxies were heavily shrouded in thick gas and dust. This obscuring material makes it difficult for us to observe these systems in short wavelengths like optical and X-ray. Instead, we have to get creative by searching for our targets at other wavelengths.
Since AGN emission is absorbed by the surrounding dust and re-radiated in infrared, we can use infrared brightness to find obscured but luminous sources. To differentiate between hidden clumps of star formation and hidden AGN, we also look for a compact radio source — a signature that points to a jet emitted from a central black hole.
A team of scientists led by Pallavi Patil (University of Virginia and the National Radio Astronomy Observatory) has now gone on the hunt for these hidden sources at Cosmic Noon.
Newly-Triggered Jets Caught in the Act
Patil and collaborators observed a sample of 155 infrared-selected sources, following up with high-resolution imaging from the Jansky Very Large Array to identify compact radio sources. From their observations and modeling of the jets, the authors estimate these sources’ properties.
The authors find bright luminosities, small sizes, and high jet pressures — all of which suggest that we’ve caught newly-triggered jets in a short-lived, unique phase of AGN evolution where the jets are still embedded in the dense gas reservoirs of their hosts. The jets are expanding slowly because they have to work hard to push through the thick clouds of surrounding material. Over time, the jets will likely expand to larger scales and clear out the surrounding matter, causing the sources to evolve into more classical looking radio galaxies.
What’s next? The authors are currently working on a companion study to further explore the shapes of the jets and their immediate environments. These young, hidden sources will provide valuable insight into how supermassive black holes evolve alongside their host galaxies.
Citation “High-resolution VLA Imaging of Obscured Quasars: Young Radio Jets Caught in a Dense ISM,” Pallavi Patil et al 2020 ApJ 896 18. doi:10.3847/1538-4357/ab9011
TOP IMAGE….Artist’s impression of a galaxy forming stars, as powerful jets that are flung from its central black hole collide with the surrounding matter. [ESO/M. Kornmesser]
CENTRE IMAGE….This composite image of Centaurus A shows an example of large-scale jets launched from an AGN, which can eventually extend far beyond the galaxy, as seen here. [ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)]
LOWER IMAGE….The redshift distribution of the authors’ sample, based on spectroscopic redshifts of 71 sources. The sources span the period of peak star formation and black hole fueling around Cosmic Noon. [Patil et al. 2020]
BOTTOM IMAGE….The JVLA 10 GHz radio continuum observations for four sources in the authors’ sample. The cyan plus symbol marks the infrared-obtained source position. The color bars indicate flux in mJy/beam. [Adapted from Patil et al. 2020]
It’s easy to forget that thousands of comets, asteroids, and meteors are near us everyday. They seem like such a rarity.
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Cosmonaut Ivan Vagner obtained this image of the comet NEOWISE a few hours ago from the International Space Station. He says that the dust tail looks very good from there. It is worth enlarging the image.
via reddit
Accurate
Even though it’s possible the apple thing never happened.
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Thinking intensifies
This is why I’m so excited for the supernova chapter ehehe
It’s so amazing that this little dot growing a bit but still being little is a supernova!
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
This is the galaxy Messier 85! 🌌🌌🌌
Just last month, scientists found a supernova taking place! The event is named SN 2020nlb and has been continuously getting brighter. It is classified as a Type Ia supernova, which results from a white dwarf exploding within a binary star system. The brightness of this supernova can be used to calculate the distance to the galaxy! 🤩🤩🤩
Taken by me (Michelle Park) using the Slooh Canary Two telescope.
Max Planck, you absolute boss
Btw there’s always something left in physics to discover. Going from nothing left to discover to quantum theory is a huge leap though, because quantum has PLENTY to figure out.
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Oof
Best Star Wars movie can’t deny it
Prequels and sequels eat your heart out
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
The Empire Strikes Back opened in theaters on this day in 1980.
CMB!!!
Aka the cosmic microwave background, which is a huge piece of evidence for the Big Bang Theory of cosmology, a remnant from the early universe.
Also my favorite superhero is Spiderman.
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
I am omnipresent
We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win.
John F. Kennedy
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Parents: Wow look at how beautiful the sunset is. Catherine? Catherine? Why are you looking away?
A Cosmic Geek: Shush I'm trying to figure out what phase the Moon is in. Is that a Waxing Gibbous? Waning??? (Edit: it was a Waxing Gibbous - also there's going to be a Full Moon on May 7th!!!)
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Yeah Earth is such a narcissist
But TESS is a great satellite (it launched in 2018 by SpaceX - so thanks guys!)
The study of exoplanets has never been my main thing in astrophysics (sorry, my heart belongs to black holes and cosmology!) but I think it’s a really cool and important field. And, for everyone who says that the vastness of space just shows our insignificance, know that the odds of us finding other intelligent life are extremely small. I think we’re pretty special.
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
SpaceX successfully launched TESS yesterday! We’re going to discover so many new exoplanets.
This basically sums it up.
Well, it doesn’t show the other things stars can be after their deaths. But it was a nice video :)
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!