This month the new year’s first meteor shower fizzles, Mars meets Jupiter in the morning sky and the U.S. will enjoy a total lunar eclipse!
Most meteor showers radiate from recognizable constellations. Like the Leonids, Geminids and Orionids.
But the Quadrantids are meteors that appear to radiate from the location of the former Quadrans Muralis constellation, an area that’s now part of the constellation Bootes.
The Quadrantids’ peak lasts for just a few hours, and sadly, this year their timing coincides with a very bright, nearly full moon that will wash out most of the meteors.
You can look in any direction to see all the meteor showers. When you see one of these meteors, hold a shoestring along the path it followed. The shoestring will lead you back to the constellation containing the meteor’s origin.
On the morning of January 6th, look in the south-southeast sky 45 minutes before sunrise to see Jupiter and fainter Mars almost as close as last month’s Jupiter and Venus close pairing.
Mars is only one-sixth the apparent diameter of Jupiter, but the two offer a great binocular and telescopic view with a pretty color contrast. They remain in each other’s neighborhood from January 5th through the 8th.
Finally, to end the month, a great total lunar eclipse favors the western U.S., Alaska, and Hawaii and British Columbia on January 31st. Australia and the Pacific Ocean are well placed to see a major portion of the eclipse–if not all of it.
Watch the full What’s Up for January Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Sudbury Neutrino Observatory (SNO)
Located in a cave more than a mile underground in Canada, SNO can be thought of as a type of telescope, though it bears little resemblance to the image most people associate with that word. It consists of an 18-meters-in-diameter stainless steel geodesic sphere inside of which is an acrylic vessel filled with 1000 tons of heavy water (deuterium oxide or D2O). Attached to the sphere are 9,522 ultra-sensitive light-sensors called photomultiplier tubes. When neutrinos passing through the heavy water interact with deuterium nuclei, flashes of light, called Cerenkov radiation, are emitted. The photomultiplier tubes detect these light flashes and convert them into electronic signals that scientists can analyze for the presence of all three types of neutrinos.
Berkeley Lab
On May 22 Mars will be at opposition. That’s when Mars, Earth and the sun all line up, with Earth directly in the middle. A few days later, Mars and Earth will reach the points in their orbits around the sun where they are nearest to each other. The closer Mars comes to Earth in its orbit, the larger and brighter it appears in the sky.
It’s an opportunity for backyard skywatchers—and a good time to catch up on all the exploration now underway at the Red Planet. Here are a few things to know this week about Mars:
1. Red Star Rising
The best time to see Mars at its brightest is when it’s highest in the sky, which is around midnight during May. Look toward the south in the constellation Scorpius (where right now you can also catch the planet Saturn). If you have a telescope, you may be able to pick out some of the features on its surface. But don’t fall for Internet rumors claiming that Mars will appear as big as the full moon. Instead, it will look like a bright, reddish or orange star. Get Mars viewing tips HERE.
2. Roving Weather Reporter
Our Mars Curiosity mission has now been roving across the floor of Gale Crater for two full Martian years—that’s four Earth years. This robotic geologist is a meteorologist, too, and its long journey has allowed it to observe the local weather for two full seasonal cycles. During that time, the rover’s instruments have recorded temperatures ranging from 60.5 degrees Fahrenheit (15.9 degrees Celsius) on a summer afternoon, to minus 148 F (minus 100 C) on a winter night. They also detected an intriguing spike in methane gas—but it hasn’t happened since.
3. Increasing Clouds, with a Chance of Dust Storms
The Mars Reconnaissance Orbiter keeps an eye on Martian weather, too, but on a global scale. Every week, you can see the latest weather report, including an animation showing storms and clouds across the face of Mars.
4. Walking the Ancient Shoreline
Mars explorers have studied evidence for years that the early history of the planet included times where liquid water flowed and pooled freely. But just how deep those ancient lakes were, and how long they lasted, remains a topic of debate. A new study offers a more detailed picture of the rise and fall of standing bodies of water.
5. Wish Upon a Star
It’s true that Mars will be especially bright in the sky this week. But did you ever consider that Earth often shines for Mars as well? This image from the Curiosity rover shows our whole world as a single point of light. When people finally do stand on Mars, they’ll be able to look at the twilight sky—and see home. Left: the Earth and the Moon in the evening sky of Mars, as seen by the Curiosity rover. Right: Mars rising over Salt Lake City. Mars credit: NASA/JPL-Caltech/MSSS/TAMU. Earth credit: Bill Dunford.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Lua e Terra fotografadas pela Apollo 17 em Dezembro de 1972.
This month, in honor of Valentine’s Day, we’ll focus on celestial star pairs and constellation couples.
Let’s look at some celestial pairs!
The constellations Perseus and Andromeda are easy to see high overhead this month.
According to lore, the warrior Perseus spotted a beautiful woman–Andromeda–chained to a seaside rock. After battling a sea serpent, he rescued her.
As a reward, her parents Cepheus and Cassiopeia allowed Perseus to marry Andromeda.
The great hunter Orion fell in love with seven sisters, the Pleiades, and pursued them for a long time. Eventually Zeus turned both Orion and the Pleiades into stars.
Orion is easy to find. Draw an imaginary line through his belt stars to the Pleiades, and watch him chase them across the sky forever.
A pair of star clusters is visible on February nights. The Perseus Double Cluster is high in the sky near Andromeda’s parents Cepheus and Cassiopeia.
Through binoculars you can see dozens of stars in each cluster. Actually, there are more than 300 blue-white supergiant stars in each of the clusters.
There are some colorful star pairs, some visible just by looking up and some requiring a telescope. Gemini’s twins, the brothers Pollux and Castor, are easy to see without aid.
Orion’s westernmost, or right, knee, Rigel, has a faint companion. The companion, Rigel B, is 500 times fainter than the super-giant Rigel and is visible only with a telescope.
Orion’s westernmost belt star, Mintaka, has a pretty companion. You’ll need a telescope.
Finally, the moon pairs up with the Pleiades on the 22nd and with Pollux and Castor on the 26th.
Watch the full What’s Up for February Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Magnetospheric Multiscale mission, or MMS, has been studying the magnetic field on the side of Earth facing the sun, the day side – but now we’re focusing on something else. On February 9, MMS started the three-month-long process of shifting to a new orbit.
One key thing MMS studies is magnetic reconnection – a process that occurs when magnetic fields collide and re-align explosively into new positions. The new orbit will allow MMS to study reconnection on the night side of the Earth, farther from the sun.
Magnetic reconnection on the night side of Earth is thought to be responsible for causing the northern and southern lights.
To study the interesting regions of Earth’s magnetic field on the night side, the four MMS spacecraft are being boosted into an orbit that takes them farther from Earth than ever before. Once it reaches its final orbit, MMS will shatter its previous Guinness World Record for highest altitude fix of a GPS.
To save on fuel, the orbit is slowly adjusted over many weeks. The boost to take each spacecraft to its final orbit will happen during the first week of April.
On April 19, each spacecraft will be boosted again to raise its closest approach to Earth, called perigee. Without this step, the spacecraft would be way too close for comfort – and would actually reenter Earth’s atmosphere next winter!
The four MMS spacecraft usually fly really close together – only four miles between them – in a special pyramid formation called a tetrahedral, which allows us to examine the magnetic environment in three dimensions.
But during orbit adjustments, the pyramid shape is broken up to make sure the spacecraft have plenty of room to maneuver. Once MMS reaches its new orbit in May, the spacecraft will be realigned into their tetrahedral formation and ready to do more 3D magnetic science.
Learn more about MMS and find out what it’s like to fly a spacecraft.
Os astrónomos usaram o ALMA e os telescópios do IRAM para fazer a primeira medição direta da temperatura dos grãos de poeira grandes situados nas regiões periféricas de um disco de formação planetária que se encontra em torno de uma estrela jovem. Ao observar de forma inovadora um objeto cujo nome informal é Disco Voador, os astrónomos descobriram que os grãos de poeira são muito mais frios do que o esperado: -266º Celsius. Este resultado surpreendente sugere que os modelos teóricos destes discos precisam de ser revistos.
Uma equipa internacional liderada por Stephane Guilloteau do Laboratoire d´Astrophysique de Bordeaux, França, mediu a temperatura de enormes grãos de poeira que se encontram em torno da jovem estrela 2MASS J16281370-2431391 na região de formação estelar Rho Ophiuchi, a cerca de 400 anos-luz de distância da Terra. Esta estrela encontra-se rodeada por um disco de gás e poeira — chamado disco protoplanetário, uma vez que se encontra na fase inicial da formação de um sistema planetário. Este disco é visto de perfil quando observado a partir da Terra e a sua aparência em imagens no visível levou a que se lhe desse o nome informal de Disco Voador. Os astrónomos utilizaram o ALMA para observar o brilho emitido pelas moléculas de monóxido de carbono no disco da 2MASS J16281370-2431391. As imagens revelaram-se extremamente nítidas e descobriu-se algo estranho — em alguns casos o sinal recebido era negativo. Normalmente um sinal negativo é fisicamente impossível, mas neste caso existe uma explicação, que leva a uma conclusão surpreendente. O autor principal Stephane Guilloteau explica: “Este disco não se observa sobre um céu noturno escuro e vazio mas sim em silhueta, frente ao brilho da Nebulosa Rho Ophiuchi. O brilho difuso é demasiado extenso para ser detectado pelo ALMA, no entanto é absorvido pelo disco. O sinal negativo resultante significa que partes do disco estão mais frias do que o fundo. Na realidade, a Terra encontra-se na sombra do Disco Voador!” A equipa combinou medições do disco obtidas pelo ALMA com observações do brilho de fundo obtidas pelo telescópioIRAM de 30 metros, situado em Espanha [1]. Derivou-se uma temperatura para os grãos de poeira do disco de apenas -266º Celsius (ou seja, apenas 7º acima do zero absoluto, ou seja 7 Kelvin) à distância de cerca de 15 mil milhões de km da estrela central [2]. Esta é a primeira medição direta da temperatura de grãos de poeira grandes (com tamanhos de cerca de 1 milímetro) em tais objetos. A temperatura medida é muito mais baixa dos que os -258 a -253º Celsius (15 a 20 Kelvin) que a maioria dos modelos teóricos prevê. Para explicar esta discrepância, os grãos de poeira grandes devem ter propriedades diferentes das que se assumem atualmente, de modo a permitirem o seu arrefecimento até temperaturas tão baixas. “Para compreendermos qual o impacto desta descoberta na estrutura do disco, temos que descobrir que propriedades da poeira, que sejam plausíveis, podem resultar de tão baixas temperaturas. Temos algumas ideias — por exemplo, a temperatura pode depender do tamanho dos grãos, com os maiores a apresentarem temperaturas mais baixas do que os mais pequenos. No entanto, ainda é muito cedo para termos certezas,” acrescenta o co-autor do trabalho Emmanuel di Folco (Laboratoire d´Astrophysique de Bordeaux). Se estas temperaturas baixas da poeira forem encontradas como sendo uma característica normal dos discos protoplanetários, este facto pode ter muitas consequências na compreensão de como é que estes objetos se formam e evoluem. Por exemplo, propriedades diferentes da poeira afectarão o que se passa quando as partículas colidem e portanto afectarão também o seu papel na criação das sementes da formação de planetas. Ainda não sabemos se esta alteração das propriedades da poeira é ou não significativa relativamente a este exemplo. Temperaturas baixas da poeira podem também ter um grande impacto nos discos de poeira mais pequenos que se sabe existirem. Se estes discos forem maioritariamente compostos por grãos maiores e mais frios do que o que se supõe atualmente, isto pode significar que estes discos compactos são arbitrariamente massivos e por isso podem ainda formar planetas gigantes relativamente próximos da estrela central. São claramente necessárias mais observações, no entanto parece que a poeira mais fria descoberta pelo ALMA poderá ter consequências significativas na compreensão dos discos protoplanetários.
Fonte:
http://www.eso.org/public/brazil/news/eso1604/
XxK�v�lO�
Pegue carona nessa cauda de cometa! !! Cometa Lovejoy fotografado pelos astronautas da Expedição 30 na ISS
Ainda estamos em 2015!! hahahah...
Pôr da Lua no Pôr do Sol! 🌙☀️
📅 Data de registro: 5 de agosto de 2024 às 18:23
Em Dezembro de 2015, a ESA lançou o LISA Pathfinder.
Depois de viajar 1.5 milhão de quilômetros e estacionar no ponto de Lagrange onde ficaria operacional, sua missão científica começou especificamente no dia 1 de Março de 2016.
Mas você conhece o LISA Pathfinder, sabe para que ele serve?
O LISA Pathfinder é um projeto da Agência Espacial Europeia que tem por objetivo provar uma tecnologia. A tecnologia de que é possível manter no espaço, dois cubos idênticos de ouro em queda livre, e não somente isso, mas a queda livre mais precisa já conseguida no espaço. Com as massas em um movimento sujeito apenas pela ação da gravidade, será possível realizar uma missão para medir as ondas gravitacionais do espaço.
Todo mundo deve lembrar que esse ano foi anunciado a detecção pela primeira vez das ondas gravitacionais, pelo LIGO, um experimento feito em Terra com dois equipamentos nos EUA. O ponto fundamental aqui é que as ondas gravitacionais ocorrem em um grande intervalo de frequências, e são necessários diferentes equipamentos para registrá-las.
A frequência das ondas gravitacionais detectadas pelo LIGO está na casa dos 100 Hz, com um experimento no espaço como o LISA será possível detectar ondas gravitacionais com frequência milhões de vezes menor do que essa.
Se vocês se lembram bem, o que causou as ondas gravitacionais detectadas pelo LIGO foi a fusão de dois buracos negros de massas estelares. Os astrônomos agora querem detectar colisões e eventos de objetos maiores, como a fusão de buracos negros supermassivos, eventos esses que geram uma frequência bem menor e só um experimento no espaço poderia detectar.
Os resultados mostram que o LISA Pathfinder conseguiu sim provar essa tecnologia, o LISA conseguiu colocar em queda livre protegido de todas as forças, somente com a gravidade atuando, dois cubos de metal com 46 centímetros de lado, com uma precisão 5 vezes maior do que aquela necessária, demonstrando que é sim possível realizar esse tipo de experimento no espaço.
Os resultados foram publicados na revista especializada Physical Review Letters e está animando os cientistas em todo o mundo, pois esses resultados superam em muito as expectativas mais otimistas sobre os resultados do LISA Pathfinder.
O LISA Patfinder é o início de um projeto muito mais ambicioso, o LISA, um sistema de detecção de ondas gravitacionais, que usará 3 naves, separadas por uma distância de 5 milhões de quilômetros entre elas e cada uma delas com cubos em queda livre, assim estará montado o detector de ondas gravitacionais que é o sonho dos astrônomos.
As ondas gravitacionais começaram a pouco a transformar a astronomia, nos dando a chance de conhecer o universo de um novo ponto de vista. E o LISA Pathfinder deu o primeiro passo, com sucesso para se detectar as ondas gravitacionais de baixa frequência do espaço.
(via https://www.youtube.com/watch?v=0KJR4-NP0kA)