Em Sintonia Com A Natureza

Em Sintonia Com A Natureza

Em Sintonia com a Natureza

🌿 No VERDE da VIDA. Onde toda a biodiversidade conhecida e catalogada pela ciência dependem de organismos fotossintetizantes, no qual possuem a molécula clorofila, que é responsável em produzir a matéria orgânica que nutre, direta ou indiretamente os seres vivos e garantindo, assim, a manutenção da vida no planeta Terra.

🌎 No AZUL da PROTEÇÃO. Onde a atmosfera é a fina camada gasosa que protege o planeta ao absorver e bloquear a propagação das radiações nocivas para o desenvolvimento da vida, e impede que tenha temperaturas extremas entre o dia e a noite, no qual permite manter a temperatura suficiente para a manutenção da vida.

📸 Créditos da imagem: Maria Gabriela Reis

📅 Data de registro: 12 de Outubro de 2018 às 15:24

📚 Créditos do texto:

[1] Revista Desenvolvida pela Divisão de Atividades Educacionais do Observatório Nacional sobre Atmosfera.

[2] PAULINO, Wilson Roberto: Biologia, Volume 2: Seres Vivos / Fisiologia. 1. ed. São Paulo: Ática, 2005.

More Posts from Carlosalberthreis and Others

8 years ago

Mais um vídeo do antigo canal!!!

O rover Curiosity acabou de completar dois anos explorando de maneira bem sucedida Marte. Desde que chegou ao planeta vermelho o rover não é mais o mesmo, tem enfrentado o clima e o ambiente hostil de Marte com muita garra e energia, sua carroceria, já não é mais tão limpa, está todo arranhado e com marcas de sua exploração por todo lado. Mas são as marcas, ou melhor as cicatrizes encontradas nas rodas do rover é que têm chamado a atenção dos cientistas e de todos aqueles envolvidos na missão.

Os cientistas da NASA ficaram alarmados ao notar um buraco, muito maior daquele esperado, em uma das seis rodas do rover, no Sol 411, ou seja, no dia de trabalho na superfície marciana, de número 411. Cada Sol dura aproximadamente 24h39m.

De início o furo foi tratado como uma anormalidade sem consequência, mas no Sol 463, uma nova inspeção nas rodas revelou um rasgo ainda maior.

“Quando vimos essas imagens, vimos um buraco que era bem maior do que esperávamos. Não se encaixava a nada que havíamos visto em nossos testes. Não sabíamos o que o estava causando”, conta Matt Haverly, piloto do rover no JPL da NASA . A descoberta desse rasgo levou a novos testes, na Terra e em Marte, para descobrir o que estava acontecendo. Então os engenheiros constataram que os furos estavam sendo produzidos por rochas pontiagudas que, por estarem fixadas firmemente ao solo, ou seja, eram rochas do embasamento, não se deslocavam ao encontrar as rodas.

Além disso, um problema adicional era responsável pelos rasgos, a fadiga do material.

As rodas do Curiosity são feitas de uma fina camada de alumínio, com 0.75 mm de espessura. Ao evoluírem sobre o terreno marciano, elas se distorcem levemente, em função do peso do rover e da dureza do solo.

Esse processo acaba deixando o material quebradiço, como quando você torce um clipe de papel metálico para um lado e para o outro até que ele se quebra, explica Emily Lakdawalla, cientista, e blogueira da ONG Planetary Society e que publicou um belo e extenso relatório sobre os problemas encontrados pelo rover Curiosity em sua jornada no Planeta Vermelho.

Em resumo, as rodas do Curiosity estão lentamente se esfacelando pelo caminho.

Até agora, não houve uma perda de desempenho considerável na condução do rover. As rodas, apesar das perfurações, mantêm sua forma original e avançam bem sobre qualquer tipo de terreno. Contudo, para evitar um desgaste acelerado, os pilotos do rover têm optado por seguir rotas que pareçam oferecer menos rico. Isso pode limitar a escolha de alvos científicos. Além disso, por vezes eles têm conduzido o rover de ré, para reduzir o desgaste nas rodas frontais.

Testes agressivos feitos no deserto de Mojave, na Califórnia, mostram que, nas piores condições de terreno possíveis, com solo duro e repleto de rochas, as rodas podem ser inutilizadas após 8 km. Até agora o rover rodou por 9 km na superfície acidentada do interior da Cratera Gale em Marte.

Num terreno fofo e com poucas rochas, ele poderia avançar indefinidamente. Mas o potencial para descobertas, nesse caso, também seria drasticamente reduzido.

Tentando encontrar um equilíbrio entre a ciência e a engenharia, os gerentes da missão imaginam  que o Curiosity possa ainda andar bem em Marte. Mas será difícil bater o recorde de seu antecessor, o rover Opportunity, que já está a uma década em Marte, e já percorreu mais de 40 km.

Para o próximo rover, a missão Marte 2020, a ideia é mudar o design das rodas, e, com isso, impedir a repetição do problema. Também cresce a pressão para que o planejamento seja mais criterioso na escolha do local de pouso, exigindo pouca rodagem até alvos científicos de alto interesse.

No vídeo acima eu debato e discuto esse tema, apresentando as principais características das rodas do rover, a razão para os seus problemas e o que se tem pensado de solução.

Mais uma vez, se gostarem do vídeo, deixem o “joinha”, se inscrevam no canal, favoritem o vídeo, compartilhem nas redes sociais e deixem seus comentários, tudo isso ajuda na divulgação e nos dá motivação para continuarmos gravando e postando vídeos sobre astronomia, astrofísica e astronáutica, para todos vocês.

(via https://www.youtube.com/watch?v=taQSA94xa18)

6 years ago
Independente De Estar Classificado Ou Não, Sempre Serei #Cruzeiro 🔵✨

Independente de estar classificado ou não, sempre serei #Cruzeiro 🔵✨

8 years ago

Juno: Inside the Spacecraft

image

Our Juno spacecraft was carefully designed to meet the tough challenges in flying a mission to Jupiter: weak sunlight, extreme temperatures and deadly radiation. Lets take a closer look at Juno:

It Rotates!

image

Roughly the size of an NBA basketball court, Juno is a spinning spacecraft. Cartwheeling through space makes the spacecraft’s pointing extremely stable and easy to control. While in orbit at Jupiter, the spinning spacecraft sweeps the fields of view of its instruments through space once for each rotation. At three rotations per minute, the instruments’ fields of view sweep across Jupiter about 400 times in the two hours it takes to fly from pole to pole.

It Uses the Power of the Sun

image

Jupiter’s orbit is five times farther from the sun than Earth’s, so the giant planet receives 25 times less sunlight than Earth. Juno will be the first solar-powered spacecraft we’ve designed to operate at such a great distance from the sun. Because of this, the surface area of the solar panels required to generate adequate power is quite large.

image

Three solar panels extend outward from Juno’s hexagonal body, giving the overall spacecraft a span of about 66 feet. Juno benefits from advances in solar cell design with modern cells that are 50% more efficient and radiation tolerant than silicon cells available for space missions 20 years ago. Luckily, the mission’s power needs are modest, with science instruments requiring full power for only about six out of each 11-day orbit.

It Has a Protective Radiation Vault

image

Juno will avoid Jupiter’s highest radiation regions by approaching over the north, dropping to an altitude below the planet’s radiation belts, and then exiting over the south. To protect sensitive spacecraft electronics, Juno will carry the first radiation shielded electronics vault, a critical feature for enabling sustained exploration in such a heavy radiation environment.

Juno Science Payload:

Gravity Science and Magnetometers – Will study Jupiter’s deep structure by mapping the planet’s gravity field and magnetic field.

image

Microwave Radiometer – Will probe Jupiter’s deep atmosphere and measure how much water (and hence oxygen) is there.

image

JEDI, JADE and Waves – These instruments will work to sample electric fields, plasma waves and particles around Jupiter to determine how the magnetic field is connected to the atmosphere, and especially the auroras (northern and southern lights).

JADE and JEDI

image

Waves

image

UVS and JIRAM – Using ultraviolet and infrared cameras, these instruments will take images of the atmosphere and auroras, including chemical fingerprints of the gases present.

UVS

image

JIRAM

image

JunoCam – Take spectacular close-up, color images.

image

Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

7 years ago

Como As Estrelas Morrem Quando Caem Num Buraco Negro? - Space Today TV Ep.731

Desde quando se lê o primeiro texto sobre buracos negros, se aprende que esses objetos possuem uma força gravitacional imensa, e que nem a luz consegue escapar dele, e se um objeto passar pelo horizonte de eventos, não tem mais volta, ele irá cair e desaparecer.

Mas será que existe mesmo um horizonte de eventos? O que nós lemos e aprendemos foi proposto pela Teoria Geral da Relatividade de Albert Einstein.

Será que ao invés de um buraco negro o que tem ali não é um objeto estranho supermassivo.

Diferente do caso do buraco negro onde existe uma singularidade, essa ideia modificada, diz que esse objeto teria uma superfície rígida, nesse caso um objeto, como uma estrela, ao passar próximo se chocaria com a superfície ao invés de ser engolida.

Um grupo de pesquisadores resolveu então testar qual das duas hipóteses é a mais correta para um buraco negro, e esse teste também funcionou como um grande teste, mais uma vez para a Teoria da Relatividade, pois provaria que existe um horizonte de eventos e que nenhum objeto realmente sobrevive a um buraco negro.

Os astrônomos pensaram o que um telescópio poderia ver caso um objeto sobrevivesse a um buraco negro.

Para fazer a busca eles escolheram buracos negros supermassivos no chamado universo próximo.

Então eles buscaram nos dados de arquivos do telescópio Pan-STARRS, um telescópio de 1.8 metros de diâmetro que pesquisa metade do céu do hemisfério norte, e ele escaneou a mesma área repetidamente num período de 3.5 anos buscando pelos chamados transientes.

Basicamente, coisas que brilham e depois apagam, e os pesquisadores buscavam por assinaturas da luz de uma estrela caindo num buraco negro ou se chocando com uma superfície.

Os astrônomos modelaram tudo isso e sabiam a taxa de estrelas que eles deveriam detectar nesse período de 3.5 anos.

E depois de vasculhar os dados do telescópio eles não descobriram absolutamente nada.

A conclusão, os buracos negros realmente possuem um horizonte de eventos e que o material realmente desaparece, como era realmente esperado.

Os astrônomos querem agora no futuro próximo utilizar o Large Synoptic Survey Telescope que como o Pan-STARRS irá pesquisar o céu repetidas vezes buscando por transientes, mas agora com um diâmetro de 8.4 metros.

3 years ago

Neste momento começo a assistir a primeira temporada da série @theexpanse.

O que essa série tem a nos mostrar sobre o possível futuro de colonização de outros planetas?!


Tags
8 years ago

Eu já falei muitas vezes para vocês que os buracos negros podem ser classificados em 3 categorias: os buracos negros supermassivos encontrados no centro de galáxias, os buracos negros de massa estelar e os buracos negros intermediários.

Esses últimos ainda não tiveram sua existência confirmada, mas os astrônomos acreditam que eles devem sim existir.

Esse tipo de buraco negro teria uma massa entre 100 e 10 mil vezes a massa do Sol e a importância além de serem o ele perdido entre os buracos negros estelares e os supermassivos, eles poderiam ser as sementes que dão origem aos buracos negros supermassivos.

Um grupo de astrônomos anunciou na última edição da revista Nature evidências para a existência de um buraco negro de massa intermediária no interior do aglomerado globular 47 Tucanae.

Esse aglomerado tem 12 bilhões de anos de vida e está localizado a cerca de 13 mil anos-luz de distância da Terra, na constelação de Tucano.

Ele contém milhares de estrelas, condensadas numa bola com 120 anos-luz de diâmetro. Além disso ele possui duas dezenas de pulsares que são importantes para essas evidências.

Esse aglomerado já foi examinado na busca por buraco negro, mas o resultado não foi o desejado, porque não no raio-X só é possível identificar os buracos negros supermassivos se alimentando ferozmente. O que não é o caso no interior desse aglomerado.

Mesmo em buracos negros mais calmos como o da nossa galáxia, inferir a sua presença não é algo complicado pois as estrela na sua volta começam a se movimentar a altas velocidades, algo também que não foi identificado no 47 Tucanae.

No caso de um aglomerado globular, uma evidência para a presença de um buraco negro é o movimento geral das estrelas, o buraco negro funciona como uma colher, recolhendo estrelas e atirando-as a altas velocidades e a grande distâncias, isso gera um sinal que é detectado pelos astrônomos.

Outra evidência são os pulsares, que emitem sinais de rádio facilmente detectados, com a presença do buraco negro de massa intermediária os pulsares são detectados a distâncias maiores do centro do que se o buraco negro não existisse.

combinando essas evidências e usando modelos computacionais, os astrônomos concluíram a presença de um buraco negro com massa equivalente a 2200 vezes a massa do Sol no 47 Tucanae.

Essa descoberta é importante, pois a técnica de detecção e a metodologia usada no processamento dos dados podem ser aplicadas a outras aglomerados globulares na busca por mais buracos negros de massa intermediária, e assim vamos também traçando a linha evolutiva desses que são um dos objetos mais intrigantes do universo.

(via https://www.youtube.com/watch?v=0WCJy3bBKfY)

9 years ago

Ainda estamos em 2015!! hahahah...

Terça, 36 de dezembro de 2015.

7 years ago

What’s Up for June 2017?

Have a planet party and compare Saturn and Jupiter! We’ll show you where and when to point your telescope or binoculars to see these planets and their largest moons. 

image

Meet at midnight to have a planetary party when Jupiter and Saturn are visible at the same time!

image

The best time will be after midnight on June 17. To see the best details, you’ll need a telescope.

image

Saturn will be at opposition on June 14, when Saturn, the Earth and the sun are in a straight line.

image

Opposition provides the best views of Saturn and several of its brightest moons. At the very least, you should be able to see Saturn’s moon Titan, which is larger and brighter than Earth’s moon.

image

As mentioned earlier, you’ll be able to see Jupiter and Saturn in the night sky this month. Through a telescope, you’ll be able to see the cloud bands on both planets. Saturn’s cloud bands are fainter than those on Jupiter. 

image

You’ll also have a great view of Saturn’s Cassini Division, discovered by astronomer Giovanni Cassini in 1675, namesake of our Cassini spacecraft.

image

Our Cassini spacecraft has been orbiting the planet since 2004 and is on a trajectory that will ultimately plunge it into Saturn’s atmosphere on September 15, 2017, bringing the mission to a close. 

image

Our Juno spacecraft recently completed its sixth Jupiter flyby. Using only binoculars you can observe Jupiter’s 4 Galilean moons - Io, Callisto, Ganymede and Europa.

image

To learn about What’s Up in the skies for June 2017, watch the full video:

For more astronomy events, check out NASA’s Night Sky Network at https://nightsky.jpl.nasa.gov/.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

10 months ago

Eu e minha tia triufamos no curral do Caprichoso! 🤩💙

Eu E Minha Tia Triufamos No Curral Do Caprichoso! 🤩💙

Tags
1 month ago
Muitos Observam O Pôr Do Sol, Poucos Observam O Pôr Da Lua, Raríssimos São Aqueles Que Contemplam

Muitos observam o pôr do Sol, poucos observam o pôr da Lua, raríssimos são aqueles que contemplam os pôres do Sol e da Lua simultaneamente! 🌅🌙

📅 Data de registro: 5 de agosto de 2024 às 18:26


Tags
Loading...
End of content
No more pages to load
carlosalberthreis - Carlos Alberth Reis
Carlos Alberth Reis

1994.4.26 • Parintins, Amazonas, Brasil

191 posts

Explore Tumblr Blog
Search Through Tumblr Tags