Taking The Vital Signs Of Mars

Taking the Vital Signs of Mars

Does Mars have quakes? What is the temperature of the Red Planet? How did Mars even form? What can it tell us about how other rocky planets formed?

The Mars InSight lander is scheduled to launch in May 2018 to search for the answers to those questions.

Taking The Vital Signs Of Mars

InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) will conduct the first thorough “check-up” of Mars in more than 4.5 billion years, measuring its “pulse”, or seismic activity; its temperature; and its “reflexes” (the way the planet wobbles when it is pulled by the Sun and its moons).

How and Why?

image

By using sophisticated instruments – tools that can measure the vital signs of a planet – InSight will delve deep beneath the surface of Mars, detecting the clues left by the earliest stages of planetary formation.  

image

Previous Mars missions have explored the surface history of the Red Planet. Mars has been less geologically active than Earth, so it retains a more complete record of its history in its core, mantle and crust. InSight will study the sizes, densities and overall structure of the Red Planet’s core, mantle and crust. 

image

The lander will also measure the rate at which heat escapes from the planet’s interior, and provide glimpses into the evolutionary processes of all the rocky planets in our solar system, including Earth, and even those circling other stars!

image

Send Your Name to Mars!

image

You can send your name to Mars onboard the InSight lander! The deadline to get your Martian boarding pass is Nov. 1. To submit your name, visit: mars.nasa.gov/syn/insight

Learn more about Mars InSight HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

7 years ago

May the 4th Be With You

Happy May the 4th! 

How many connections does America’s space program have with the fictional world of Star Wars? More than you might think…

Join us as we highlight a few of the real-world TIE-ins between us and Star Wars:

Space Laser

image
image

Lasers in space sounds like something straight out of Star Wars, but it’s also a reality for us. Our own GEDI (yes, like Jedi) instrument will launch later this year to the International Space Station.

image
image

GEDI stands for the Global Ecosystem Dynamics Investigation lidar. It will study the height of trees and forests, using three lasers split into eight tracks, and create a 3D map of forests around the planet.

image

With GEDI’s new tree maps, we’ll get a better understanding of how much carbon is stored in forests all over Earth, and how forests will be able to absorb increasing carbon dioxide in the atmosphere.

The Jedi knights may help protect a galaxy far, far away, but our GEDI will help us study and understand forest changes right here on Earth.

image

Another JEDI

image

There’s another Jedi in town and it happens to be orbiting the planet Jupiter. Our Juno spacecraft, which arrived at the gas giant in July 2016, has an instrument on board that goes by the name of JEDI - the Jupiter Energetic Particle Detector Instrument. 

While it doesn’t use a light saber or channel “the force”, it does measure high-energy particles near Jupiter. Data collected with the JEDI instrument will help us understand how the energy of Jupiter’s rotation is being funneled into its atmosphere and magnetosphere. 

Death Star Moon

image

We know what you’re thinking...”That’s no moon.” But actually, it is! This is a real picture taken by our Cassini spacecraft of Saturn’s moon Mimas. In this view taken on Cassini’s closest-ever flyby of Mimas, the large Herschel Crater dominates, making the moon look like the Death Star. Herschel Crater is 130 kilometers, or 80 miles, wide and covers most of the right of this image. 

We Actually Do Have the Droids You’re Looking For

image

We have robots roving and exploring all over the solar system, but it's our own “R2” that's most likely to resonate with Star Wars fans. Robonaut 2, launched in 2011, is working along side humans on board the International Space Station, and may eventually help with spacewalks too dangerous for humans. Incidentally, an earlier version of Robonaut bore a strong “facial” resemblance to enigmatic bounty hunter Boba Fett.

image

Another "droid" seen on the space station was directly inspired by the saga. In 1999, then Massachusetts Institute of Technology (MIT) professor David Miller, showed the original 1977 Star Wars to his students on their first day of class. After the scene where hero Luke Skywalker learns lightsaber skills by sparring with a floating droid “remotes” on the Millennium Falcon, Miller stood up and pointed: "I want you to build me some of those."

The result was "SPHERES," or Synchronized Position Hold, Engage, Reorient, Experimental Satellites.  Originally designed to test spacecraft rendezvous and docking maneuvers, the bowling-ball size mini-satellites can now be powered by smart phones.

A few more TIE ins...

image

When space shuttle Atlantis left the International Space Station after 2007’s STS-117 mission, it caught a view of the station that looked to some like a TIE fighter. 

image

The "TIE-ins" go beyond casual resemblance to real engineering. We already use actual ion engines ("TIE" stands for "Twin Ion Engines") on spacecraft like Dawn, currently orbiting the dwarf planet Ceres. In fact, Dawn goes one better with three ion engines. 

Want more Star Wars connections? Check out THIS Tumblr to learn about the REAL planets we’ve found outside our solar system that resemble planets from the movie. 

Take THIS quiz to see if you know more about the Milky Way galaxy or a galaxy far, far away. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
5 years ago
NASA Spotlight: Astronaut Kjell Lindgren 

NASA Spotlight: Astronaut Kjell Lindgren 

Kjell N. Lindgren was selected by NASA in 2009. Born in Taiwan while his family was stationed overseas, he spent most of his childhood abroad and returned to the U.S. to complete his education and earn a Doctorate of Medicine from the University of Colorado. He is board certified in emergency and aerospace medicine. After serving as the Deputy Crew Surgeon for Space Shuttle mission STS‐130 and Expedition 24, he was selected to join our astronaut corps. Dr. Lindgren flew on the International Space Station from July 2015 to December 2015 and logged 141 days in space. He participated in two spacewalks and in more than a hundred different scientific experiments. In his free time, Dr. Lindgren enjoys spending time with his family, running, reading, movies, photography and amateur astronomy.

He took some time from being a NASA astronaut to answer questions about his life and career! Enjoy: 

What is one thing you would take to space that would make life easier?

A real R2 unit, of course! Just kidding, but in the future…  Honestly though, life is pretty good on the International Space Station. While it is still a lot like camping (sleeping bags, no running water, rehydrated food) the space station team has really equipped us for success. As you all prepare for YOUR future spaceflight, I would say that the two most useful items I had with me on a daily basis were a pair of scissors and a spoon. The scissors were super useful for cutting plastic wrappers, tape, etc., and opening food packages (much more useful than a knife). And the spoon is the only utensil you need for eating – at least with the food system that we have right now.

Who helped get you to where you are?

image

Getting this opportunity, becoming an astronaut – that was a team effort for sure. I had so many people walking alongside me on this journey, helping me along the way. My parents set the bit early on – telling me that I could become whatever I wanted through hard work. They really gave me permission to dream big. Teachers and coaches, mentors, co-workers and friends all played a huge part in reaching this goal. Most of all, though, my wife, Kristi and my three kids have been an integral part of this adventure. I would not have this job, and I wouldn’t be successful in it without their love and daily support.

You and your crew mates were the first astronauts to harvest lettuce grown on orbit. How did it taste?

image

The lettuce tasted like…lettuce, which was a good thing, because if it hadn’t, then it meant we had made a huge mistake. It was so much fun to be a part of that experiment. The payoff, getting to eat fresh grown food on orbit was of course, a lot of fun. But just getting to take care of the lettuce plant, watch it grow in the sterile looking environment of the space station, getting to take care of this living thing on a daily basis, it was good for the soul.

How do you prepare for someone getting hurt or sick in space? 

We train at least two crew members on every expedition to be Crew Medical Officers, or CMOs. They spend about 40 – 50 hours learning how to use the medical equipment and procedures on the space station, so that they can essentially serve as an extension of the flight surgeon in mission control. We have equipment and medication to deal with most minor illnesses and injuries. But because we are in low earth orbit, we can evacuate an ill crew member back to Earth in the event of a severe medical issue. This option won’t be available as we push out further from Earth, so we’ll need more rigorous training and a more comprehensive medical system.

How many times did you apply to be an astronaut?

image

I was very fortunate and got selected on my first try. I have several friends in the office though, who applied 4 or 5 times before being selected. It is amazing to go through the selection process and to meet others who share your dream. Enjoy the experience and keep applying – it is worth it!

How can I improve my chances of being selected to become an astronaut?

I recommend continuing to do things that you enjoy, continue to build experience at work and maybe look for new opportunities in your job that will grow you in your career and grow you as a leader. But choose opportunities because YOU want to do them, not based on what you think NASA is looking for. There is no one path or experience that leads to becoming an astronaut. We have an amazing diversity of experience and background in the astronaut office.

What advice do you have for the newest astronauts?

image

Enjoy the journey! Spaceflight is amazing, but even as astronauts, most of us spend 95% of our career on the ground. Enjoy every part of the job, supporting missions as a Spacecraft Communicator (CapCom), verifying procedures for a repair or training for a spacewalk. It is amazing to be a part of the team that launches and supports humans living and working in space. It is an amazing thing.

Which is more exciting: spacewalking or skydiving?

image

Skydiving was pretty amazing. I got to do quite a bit of it as a member of the Air Force Academy parachute team. But there is nothing quite like doing a spacewalk. It is an indescribable experience, putting hundreds of hours of training to work, the physical and mental challenge of operating in that harsh environment. But the view outside the space station, of the Earth, the stars, the structure of the space station – it was a highlight of my time in space and something I will never forget.

What's the most interesting part about training with the Dragon capsule?

It has been awesome working with the NASA and SpaceX teams as we are preparing to launch in the Crew Dragon capsule. My favorite part of the experience has always been and continues to be the people. Safely sending humans to space and back is one of the most difficult things humanity has ever done. That challenge attracts the best and brightest people from across our country. Getting to work with those folks at NASA and at SpaceX, to experience their enthusiasm, dedication and ingenuity on a daily basis is a gift. It has also been a lot of fun seeing a different approach to human spaceflight. I’m very familiar with how NASA and the Russian Space Agency Roscosmos operate. It has been fun seeing a different perspective and approach.

Can you share your favorite photo or video that you took in space?

image

Yes! This is my favorite photo of the Milky Way, with a lightning strike illuminating a solar array.

Thanks Dr. Lindgren, and good luck on your next spaceflight!  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Studying Storms from Air and Space

Technology we’ve developed is helping study the movement of storms.  

From satellites that can slice through a hurricane with 3-D vision to computer models of gale force winds, scientists now have unprecedented ways of viewing extreme weather.

This August, we’re sending an unmanned aircraft called a Global Hawk to study hurricanes. This mission is called the “East Pacific Origins and Characteristics of Hurricanes,” or EPOCH. It will fly over developing tropical storms to investigate how they progress and intensify. 

image

The three instruments aboard this Global Hawk aircraft will map out 3-D patterns of temperature, pressure, humidity, precipitation and wind speed as well as the role of the East Pacific Ocean in global cyclone formation. These measurements will help scientists better understand the processes that control storm intensity and the role of the East Pacific Ocean in global cyclone formation.

image

To better understand hurricane formation and intensity, scientists also utilize models and other observations.

image

Satellites such as our Global Precipitation Measurement Mission, or GPM, and computer models can analyze key stages of storm intensification.  

image

In September 2016, GPM captured Hurricane Matthew’s development from a Category 1 to Category 5 hurricane in less than 24 hours.  

image

Extreme rainfall was seen in several stages of the storm, causing significant flooding and landslides when it passed by Cuba, Haiti and the Dominican Republic.

image

By combining model and observed data, scientists can analyze storms like never before. They can also better understand how hurricanes and other powerful storms can potentially impact society.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
Our Future Mars 2020 Rover, Seen Here As Imagined Through The Eyes Of An Artist, Will Search For Signs

Our future Mars 2020 rover, seen here as imagined through the eyes of an artist, will search for signs of past microbial life. The mission will take the next step in exploring the Red Planet by not only seeking signs of habitable conditions on Mars in the ancient past, but also searching for signs of past microbial life itself. 

The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020, aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Learn more.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

Which Landsat Image Do You Love?

Feeling competitive? We’ve got a game for you to play in! Tournament Earth: The Landsat Games is happening right now, and as we get to the final entries, the competition is heating up.

Which Landsat Image Do You Love?

You can help us pick the winner by voting for one of the remaining four Landsat images of our home planet! Our competition started with 32 images, divided into categories by what they show: land, water, ice & snow, and human impact.

So, what do you think? Which one of these images is going for gold?

Land

First up, we have an image of the Markha River and surrounding Central Siberian Plateau, acquired in 2020 by Landsat 8. The hypnotic undulations of striping across the landscape carried this image to victory over the rest of the Land images -- a particularly tough category, given that these images all come from Landsat.

Which Landsat Image Do You Love?

Water

It’s not all land, though! The bright blues and greens of this false-color image of the Atchafalaya Delta in Louisiana helped carry it to victory in the Water category. The image, taken in 2020 by Landsat 8, shows a region that’s subject to erosion of land by wind and rising sea levels.

Which Landsat Image Do You Love?

Ice & Snow

Brrr! Did it get cold in here? That’s the finalist from the Ice and Snow category, an image of sea ice around Russia’s New Siberian Islands. The image, collected by Landsat 8 in June 2016, shows sea ice during its annual seasonal breakup.

Which Landsat Image Do You Love?

Human Impact

Humans have been shaping the planet around us for hundreds of years. Some changes, like rice fields in the Sacramento Valley, are visible from space. Landsat 8 collected this false-color image of flooded rice fields in December 2018.

Which Landsat Image Do You Love?

So, now it’s up to you! Which image is your favorite? There can only be one winner of Tournament Earth: The Landsat Games. Get your vote in, and then get ready to watch as we launch the next Landsat satellite, Landsat 9, in September.

Which Landsat Image Do You Love?

The Landsat mission is a partnership between us at NASA and the U.S. Geological Survey. Together, we’ve been using Landsat satellites to collect nearly 50 years of images of our home planet.

Make sure to follow us on Tumblr for your regular dose of space.


Tags
9 years ago

Cygnus Cargo Craft: What’s Onboard?

image

New experiments are scheduled to arrive to the International Space Station with the launch of Orbital ATK’s Cygnus cargo spacecraft on Tuesday. These science payloads will study fires, meteors, regolith, adhesion and 3-D printing in microgravity.

Take a look at the experiments:

Saffire-I

image

What is it? What happens when you set a fire in space? The Spacecraft Fire Experiment-I (Saffire-I) will find out!

How does it work? This experiment will intentionally light a large-scale fire inside an empty Cygnus resupply vehicle after it leaves the space station and before it re-enters Earth’s atmosphere.

Why is it important? The Saffire-I investigation provides a new way to study a realistic fire on an exploration vehicle, which has not been possible in the past because the risks for performing studies on manned spacecraft are too high. Instruments on the returning Cygnus will measure flame growth, oxygen use and more.

Meteor

image

What is it? A less heated investigation, Meteor Composition Determination (Meteor) will enable the first space-based observations of meteors entering Earth’s atmosphere from space. Meteors are somewhat rare and are difficult to monitor from the ground because of Earth’s atmosphere.

How does it work? This investigation uses high-resolution video and image analysis of the atmosphere to acquire the physical and chemical properties of the meteoroid dust, such as size, density and chemical composition.

Why is it important? Studying the elemental composition of meteors adds to our understanding of how the planets developed, and continuous measurement of meteor interactions with Earth’s atmosphere could spot previously unforeseen meteors.

Strata-1

image

What is it? A more “grounded” investigation will study the properties and behavior of regolith, the impact-shatterd “soil” found on asteroids, comets, the moon and other airless worlds.

How does it work? The Strata-1 experimental facility exposes a series of regolith simulants, including pulverized meteorite material, glass beads, and regolith simulants composed of terrestrial materials and stored in multiple transparent tubes, to prolonged microgravity on the space station. Scientists will monitor changes in regolith layers and layering, size sorting and particle migration via video images and close examination after return of the samples to Earth.

Why is it important? The Strata-1 investigation could give us new answers about how regolith behaves and moves in microgravity, how easy or difficult it is to anchor a spacecraft in regolith, how it interacts with spacecraft and spacesuit materials and other important properties.

Gecko Gripper

image

What is it? From grounded to gripping, another investigation launching takes inspiration from small lizards. Geckos have specialized hairs on their feed called setae that let them stick to vertical surfaces without falling, and their stickiness doesn’t wear off after repeated use. The Gecko Gripper investigation tests a gecko-adhesive gripping device that can stick on command in the harsh environment of space.

How does it work? The gripping device is a material with synthetic hairs much like setae that are much thinner than a human hair. When a force is applied to make the tiny hairs bend, the positively charged part of a molecule within a slight electrical field attracts the negatively charged part of its neighbor resulting in “stickiness.” Once adhered, the gripper can bear loads up to 20 pounds. The gripper can remain in place indefinitely and can also be easily removed and reused.

Why is it important? Gecko Grippers have many applications on current and future space missions, including acting as mounting devices for payloads, instruction manuals and many other small items within the space station. In addition, this technology enables a new type of robotic inspection system that could prove vital for spacecraft safety and repair.

Additive Manufacturing Facility

image

What is it? From adhesion to additive, the new Additive Manufacturing Facility (AMF) will also launch on the flight. Additive manufacturing (3D printing) is the process of building a part layer-by-layer, with an efficient use of the material.

How does it work? The AMF uses this technology to enable the production of components on the space station for both NASA and commercial objectives.

Why is it important? Parts, entire experiments and tools can be created on demand with this technology. The ability to manufacture on the orbiting laboratory enables on-demand repair and production capability, as well as essential research for manufacturing on long-term missions.

These sticky, stony and sizzling investigations are just a sampling of the wide range of science conducted on the orbiting laboratory that benefits future spaceflight and provides Earth-based benefits as well.

Watch the Launch!

You can watch the launch of Orbital ATK’s Cygnus spacecraft online. Stream live coverage starting at 10 p.m. EDT on March 22. Launch is scheduled for 11:05 p.m., which is the start of a 30-minute launch window. 

Watch online: nasa.gov/nasatv 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Exploration in Extreme Environments: Under Water and in Outer Space

Living in the depths of the sea…to prepare for travel in deep space. 

Sounds strange, but that’s what our NEEMO expedition aims to do.

image

This 10-day NASA Extreme Environment Mission Operations (NEEMO) 22 expedition is slated to begin on June 18. NEEMO 22 will focus on both exploration spacewalks (or in this case waterwalks?) and objectives related to the International Space Station and deep space missions.

Analog (noun): is a situation on Earth that produces effects on the body similar to those experienced in space, both physical and mental/emotional. These studies help us prepare for long duration missions.

image

As an analog for future planetary science concepts and strategies, marine science also will be performed under the guidance of Florida International University’s marine science department.

image

NASA astronaut Kjell Lindgren will command the NEEMO 22 mission aboard the Aquarius laboratory, 62 feet below the ocean surface near Key Largo Florida. Lindgren was part of the space station Expeditions 44 and 45 in 2015, where he spent 141 days living and working in the extreme environment of space. He also conducted two spacewalks.

Fun Fact: These underwater explorers are referred to as “aquanauts”

image

Lindgren will be joined by ESA (European Space Agency) astronaut Pedro Duque, Trevor Graff, a Jacobs Engineering employee working as a planetary scientist at our Johnson Space Center; and research scientists Dom D’Agostino from the University of South Florida and the Florida Institute of Human and Machine Cognition.

While living underwater for 10 days, the crew will:

Test spaceflight countermeasure equipment

Validate technology for precisely tracking equipment in a habitat

Complete studies of body composition and sleep

Assess hardware sponsored by ESA that will help crew members evacuate someone who has been injured on a lunar spacewalk

image

Why do we use Analog Missions?

Analog missions prepare us for near-future exploration to asteroids, Mars and the moon. Analogs play a significant role in problem solving for spaceflight research.

Not all experiments can be done in space – there is not enough time, money, equipment and manpower

Countermeasures can be tested in analogs before trying them in space. Those that do not work in analogs will not be flown in space

Ground-based analog studies are completed more quickly and less expensively

For more information about the NEEMO mission, visit: https://www.nasa.gov/mission_pages/NEEMO/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What do you do on a daily basis?


Tags
8 years ago

10 People You Wish You Met from 100 Years of NASA’s Langley

Something happened 100 years ago that changed forever the way we fly. And then the way we explore space. And then how we study our home planet. That something was the establishment of what is now NASA Langley Research Center in Hampton, Virginia. Founded just three months after America's entry into World War I, Langley Memorial Aeronautical Laboratory was established as the nation's first civilian facility focused on aeronautical research. The goal was, simply, to "solve the fundamental problems of flight."

image

From the beginning, Langley engineers devised technologies for safer, higher, farther and faster air travel. Top-tier talent was hired. State-of-the-art wind tunnels and supporting infrastructure was built. Unique solutions were found.

Langley researchers developed the wing shapes still used today in airplane design. Better propellers, engine cowlings, all-metal airplanes, new kinds of rotorcraft and helicopters, faster-than-sound flight - these were among Langley's many groundbreaking aeronautical advances spanning its first decades.

image

By 1958, Langley's governing organization, the National Advisory Committee for Aeronautics, or NACA, would become NASA, and Langley's accomplishments would soar from air into space.

Here are 10 people you wish you met from the storied history of Langley:

image

Robert R. "Bob" Gilruth (1913–2000) 

Considered the father of the U.S. manned space program.

He helped organize the Manned Spacecraft Center – now the Johnson Space Center – in Houston, Texas. 

Gilruth managed 25 crewed spaceflights, including Alan Shepard's first Mercury flight in May 1961, the first lunar landing by Apollo 11 in July 1969, the dramatic rescue of Apollo 13 in 1970, and the Apollo 15 mission in July 1971.

image

Christopher C. "Chris" Kraft, Jr. (1924-) 

Created the concept and developed the organization, operational procedures and culture of NASA’s Mission Control.

Played a vital role in the success of the final Apollo missions, the first manned space station (Skylab), the first international space docking (Apollo-Soyuz Test Project), and the first space shuttle flights.

image

Maxime "Max" A. Faget (1921–2004) 

Devised many of the design concepts incorporated into all U.S.  manned spacecraft.

The author of papers and books that laid the engineering foundations for methods, procedures and approaches to spaceflight. 

An expert in safe atmospheric reentry, he developed the capsule design and operational plan for Project Mercury, and made major contributions to the Apollo Program’s basic command module configuration.

image

Caldwell Johnson (1919–2013) 

Worked for decades with Max Faget helping to design the earliest experimental spacecraft, addressing issues such as bodily restraint and mobility, personal hygiene, weight limits, and food and water supply. 

A key member of NASA’s spacecraft design team, Johnson established the basic layout and physical contours of America’s space capsules.

image

William H. “Hewitt” Phillips (1918–2009) 

Provided solutions to critical issues and problems associated with control of aircraft and spacecraft. 

Under his leadership, NASA Langley developed piloted astronaut simulators, ensuring the success of the Gemini and Apollo missions. Phillips personally conceived and successfully advocated for the 240-foot-high Langley Lunar Landing Facility used for moon-landing training, and later contributed to space shuttle development, Orion spacecraft splashdown capabilities and commercial crew programs.

image

Katherine Johnson (1918-) 

Was one of NASA Langley’s most notable “human computers,” calculating the trajectory analysis for Alan Shepard’s May 1961 mission, Freedom 7, America’s first human spaceflight. 

She verified the orbital equations controlling the capsule trajectory of John Glenn’s Friendship 7 mission from blastoff to splashdown, calculations that would help to sync Project Apollo’s lunar lander with the moon-orbiting command and service module. 

Johnson also worked on the space shuttle and the Earth Resources Satellite, and authored or coauthored 26 research reports.

image

Dorothy Vaughan (1910–2008) 

Was both a respected mathematician and NASA's first African-American manager, head of NASA Langley’s segregated West Area Computing Unit from 1949 until 1958. 

Once segregated facilities were abolished, she joined a racially and gender-integrated group on the frontier of electronic computing. 

Vaughan became an expert FORTRAN programmer, and contributed to the Scout Launch Vehicle Program.

10 People You Wish You Met From 100 Years Of NASA’s Langley

William E. Stoney Jr. (1925-) 

Oversaw the development of early rockets, and was manager of a NASA Langley-based project that created the Scout solid-propellant rocket. 

One of the most successful boosters in NASA history, Scout and its payloads led to critical advancements in atmospheric and space science. 

Stoney became chief of advanced space vehicle concepts at NASA headquarters in Washington, headed the advanced spacecraft technology division at the Manned Spacecraft Center in Houston, and was engineering director of the Apollo Program Office.

image

Israel Taback (1920–2008) 

Was chief engineer for NASA’s Lunar Orbiter program. Five Lunar Orbiters circled the moon, three taking photographs of potential Apollo landing sites and two mapping 99 percent of the lunar surface. 

Taback later became deputy project manager for the Mars Viking project. Seven years to the day of the first moon landing, on July 20, 1976, Viking 1 became NASA’s first Martian lander, touching down without incident in western Chryse Planitia in the planet’s northern equatorial region.

image

John C Houbolt (1919–2014) 

Forcefully advocated for the lunar-orbit-rendezvous concept that proved the vital link in the nation’s successful Apollo moon landing. 

In 1963, after the lunar-orbit-rendezvous technique was adopted, Houbolt left NASA for the private sector as an aeronautics, astronautics and advanced-technology consultant. 

He returned to Langley in 1976 to become its chief aeronautical scientist. During a decades-long career, Houbolt was the author of more than 120 technical publications.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

See our home planet from Mars, learn about our latest Discovery missions, see stunning imagery from the Cassini mission and more!

Solar System: Things To Know This Week

1. Our Home

The powerful HiRISE camera on the Mars Reconnaissance Orbiter took this incredible image of our home and moon. The image combines two separate exposures taken on Nov. 20, 2016. 

+ See more 

Solar System: Things To Know This Week

2. Our Latest Missions of Discovery

We’ve selected two new missions to explore the early solar system. Lucy, a robotic spacecraft scheduled to launch in October 2021, is slated to arrive at its first destination, a main belt asteroid, in 2025. From 2027 to 2033, Lucy will explore six Jupiter Trojan asteroids. These asteroids are trapped by Jupiter's gravity in two swarms that share the planet's orbit, one leading and one trailing Jupiter in its 12-year circuit around the sun.

+Learn more

Psyche, targeted to launch in October 2023, will explore one of the most intriguing targets in the main asteroid belt--a giant metal asteroid, known as 16 Psyche. The asteroid is about 130 miles (210 kilometers) in diameter and thought to be comprised mostly of iron and nickel, similar to Earth's core.

+ Details

Solar System: Things To Know This Week

3. Image From Cassini  

Cassini took so many jaw-dropping photos last year, how could anyone choose just 10? Well, the Cassini team didn't. Here are 17 amazing photos from Saturn and its moons last year.

Solar System: Things To Know This Week

4. The Colors of Mars

Impact craters have exposed the subsurface materials on the steep slopes of Mars. However, these slopes often experience rockfalls and debris avalanches that keep the surface clean of dust, revealing a variety of hues, like in this enhanced-color image from our Mars Reconnaissance Orbiter, representing different rock types. 

+ Learn more

Solar System: Things To Know This Week

5. More From New Horizons

Even though our New Horizons mission flew by Pluto in 2015, the scientific discoveries keep coming. Using a model similar to what meteorologists use to forecast weather and a computer simulation of the physics of evaporating ices, scientists have found evidence of snow and ice features that, until now, had only been seen on Earth.

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • jadedadultritsu
    jadedadultritsu reblogged this · 4 years ago
  • jadedadultritsu
    jadedadultritsu liked this · 4 years ago
  • cloversandstars
    cloversandstars liked this · 5 years ago
  • auhertlangley
    auhertlangley liked this · 5 years ago
  • larrystylixson28
    larrystylixson28 liked this · 5 years ago
  • dicklaurent
    dicklaurent liked this · 5 years ago
  • snn3d3n
    snn3d3n liked this · 5 years ago
  • gzmtt
    gzmtt liked this · 5 years ago
  • grininkararsizligi
    grininkararsizligi reblogged this · 5 years ago
  • juanitasommers
    juanitasommers liked this · 6 years ago
  • laaltess
    laaltess reblogged this · 6 years ago
  • vexesmortem-who0ps
    vexesmortem-who0ps liked this · 6 years ago
  • masa1206ita
    masa1206ita liked this · 6 years ago
  • magkevin86
    magkevin86 liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags