Strap In For A Tour Of The Milky Way

Strap in for a Tour of the Milky Way

image

The night sky isn’t flat. If you traveled deep into this part of the sky at the speed of the radio waves leaving this tower, here are some places you could reach.

Jupiter: Travel time – 35 minutes, 49 seconds.

image

The closest object in this view is the planet Jupiter, brilliant now in the evening sky…and gorgeous when seen up close by our Juno spacecraft. Distance on the night this picture was taken: 400 million miles (644 million kilometers). 

Saturn: Travel time – one hour and 15 minutes.

image

The next closest is Saturn, another bright “star” in this summer’s sky. On the right, one of the Cassini spacecraft’s last looks. Distance: 843 million miles (1.3 billion kilometers).

Pluto: Light-speed travel time from the radio tower – four hours, 33 minutes.

image

It’s not visible to the unaided eye, but Pluto is currently found roughly in this direction. Our New Horizons space mission was the first to show us what it looks like. Distance: more than 3 billion miles.

F-type star, HD 169830: Light-speed travel time from the radio tower – 123 years.

image

Within this patch of sky, there’s an F-type star called HD 169830. At this speed, it would take you 123 years to get there. We now know it has at least two planets (one of which is imagined here) — just two of more than 4,000 we've found…so far.

The Lagoon Nebula: Light-speed travel time from the radio tower – 4,000 years.

image

If you look closely, you’ll see a fuzzy patch of light and color here. If you look *really* closely, as our Hubble Space Telescope did, you’ll see the Lagoon Nebula, churning with stellar winds from newborn stars.

Black hole, Sagittarius A*: Light-speed travel time from the radio tower – 26,000 years.

image

In 26,000 years, after passing millions of stars, you could reach the center of our galaxy. Hidden there behind clouds of dust is a massive black hole. It’s hidden, that is, unless you use our Chandra X-ray Observatory which captured the x-ray flare seen here.

image

The next time you’re under a deep, dark sky, don’t forget to look up…and wonder what else might be out there.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

8 years ago

Solar System: Things to Know This Week

Learn more about our Deep Space Network, where to watch the Ursid meteor shower, Cassini’s ring-grazing at Saturn and more.

image

1. A Deep Space Anniversary

On Dec. 24, 1963, the Jet Propulsion Laboratory's Deep Space Information Facility was renamed the Deep Space Network. And, it’s been humanity's ear to the skies ever since.

+ History of the Deep Space Network 

image

2. Ursid Meteor Shower 

The best time to view the Ursids, radiating from Ursa Minor, or the little Dipper, will be from midnight on December 21 until about 1a.m. on December 22, before the moon rises.

image

3. At Saturn, the Ring-Grazing Continues

Our Cassini spacecraft has completed several orbits that take it just outside Saturn’s famous rings. The first ring-grazing orbit began on November 30. The spacecraft will repeat this feat 20 times, with only about a week between each ring-plane crossing.

+ Learn more

Solar System: Things To Know This Week

4. Preparing for the 2017 Total Solar Eclipse

Next year North America will see one of the most rare and spectacular of all sky events. Learn how to prepare.

+ 2017 Solar Eclipse Toolkit

image

5. Searching for Rare Asteroids

Our first mission to return an asteroid sample to Earth will be multitasking during its two-year outbound cruise to the asteroid Bennu. On February 9-20, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) will activate its onboard camera suite and begin its search for elusive “Trojan,” asteroids, constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet. Because they constantly lead or follow in the same orbit, they will never collide with their companion planet.

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
image
image

Because space is vast and full of mysteries, NASA is developing a new rocket, a new spacecraft for astronauts and new facilities to launch them from. Our Space Launch System will be unlike any other rocket when it takes flight. It will be bigger, bolder and take astronauts and cargo farther than humankind has ever been -- to deep space destinations like the moon, a deep space gateway or even Mars. 

The Gravity-Slayer

image

When you plan to get to space, you use ice and fire. NASA’s Space Launch System uses four rocket engines in the center of the rocket and a pair of solid rocket boosters on opposite sides. All this power will propel the Space Launch System to gravity-slaying speeds of more than 17,000 miles per hour! These are the things we do for space exploration, the greatest adventure that ever was or will be.

It is Known

image

It is known that according to Newton’s third law, for every action there is an equal and opposite reaction. That’s how rocket propulsion works. Fuel burned in combustion chambers causes hot gases to shoot out the bottom of the engine nozzles. This propels the rocket upward. 

Steammaker

image

It is also known that when you combine hydrogen and oxygen you get: water. To help SLS get to space, the rocket’s four RS-25 engines shoot hydrogen and oxygen together at high speeds, making billowing clouds of steaming hot water vapor. The steam, funneled through the engine nozzles, expands with tremendous force and helps lift the rocket from the launchpad. 

RS-25: Ice King

image

It takes a lot of fuel (hydrogen) and a lot of oxygen to make a chemical reaction powerful enough to propel a rocket the size of a skyscraper off the launch pad. To fit more hydrogen and oxygen into the tanks in the center of the rocket where they’re stored, the hydrogen and oxygen are chilled to as low as -400 degrees Fahrenheit. At those temperatures, the gases become icy liquids. 

The Fire that Burns Against the Cold

image

The hydrogen-oxygen reaction inside the nozzles can reach temperatures up to 6,000 degrees Fahrenheit (alas, only Valyrian steel could withstand those temperatures)! To protect the nozzle from this heat, the icy hydrogen is pumped through more than a thousand small pipes on the outside of the nozzle to cool it. After the icy liquid protects the metal nozzles, it becomes fuel for the engines. 

Where is my FIRE?

image

The Space Launch System solid rocket boosters are the fire and the breakers of gravity’s chains. The solid rocket boosters’ fiery flight lasts for two minutes. They burn solid fuel that’s a potent mixture of chemicals the consistency of a rubber eraser. When the boosters light, hot gases and fire are unleashed at speeds up to three times the speed of sound, propelling the vehicle to gravity-slaying speed in seconds. 

Testing is Here

image

To make sure everything works on a rocket this big, it takes a lot of testing before the first flight. Rocket hardware is rolling off production lines all over the United States and being shipped to testing locations nationwide. Some of that test hardware includes replicas of the giant tanks that will hold the icy hydrogen and oxygen.

As Rare as Dragonglass

image

Other tests include firing the motor for the solid rocket boosters. The five-segment motor is the largest ever made for spaceflight and the part that contains the propellant that burns for two fiery, spectacular minutes. It’s common during ground test firings for the fiery exhaust to turn the sand in the Utah desert to glass.

Hold the Door

image

When all the hardware, software and avionics for SLS are ready, they will be shipped to Kennedy Space Center where the parts will be assembled to make the biggest rocket since the Saturn V. Then, technicians will stack Orion, NASA’s new spacecraft for taking astronauts to deep space, on top of SLS. All this work to assemble America’s new heavy-lift rocket and spacecraft will be done in the Vehicle Assembly Building -- one of the largest buildings in the world. Hold the door to the Vehicle Assembly Building open, because SLS and Orion are coming!

Learn more about our Journey to Mars here: https://www.nasa.gov/topics/journeytomars/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

The Search for Starless Planets

While it’s familiar to us, our solar system may actually be a bit of an oddball. Our Milky Way galaxy is home to gigantic worlds with teeny-tiny orbits and planets that circle pairs of stars. We’ve even found planets that don’t orbit stars at all! Instead, they drift through the galaxy completely alone (unless they have a moon to keep them company). These lonely island worlds are called rogue planets.

image

Where do rogue planets come from?

The planet-building process can be pretty messy. Dust and gas around a star clump together to form larger and larger objects, like using a piece of play-dough to pick up other pieces.

Sometimes collisions and close encounters can fling a planet clear out of the gravitational grip of its parent star. Rogue planets may also form out in space on their own, like the way stars grow.

image

Seeing the invisible

We’ve discovered more than 4,000 exoplanets, but only a handful are rogue planets. That’s because they’re superhard to find! Rogue planets are almost completely invisible to us because they don’t shine like stars and space is inky black. It’s like looking for a black cat in a dark room without a flashlight.

Some planet-finding methods involve watching to see how orbiting planets affect their host star, but that doesn’t work for rogue planets because they’re off by themselves. Rogue planets are usually pretty cold too, so infrared telescopes can’t use their heat vision to spot them either.

So how can we find them? Astronomers use a cool cosmic quirk to detect them by their effect on starlight. When a rogue planet lines up with a more distant star from our vantage point, the planet bends and magnifies light from the star. This phenomenon, called microlensing, looks something like this:

image

Imagine you have a trampoline, a golf ball, and an invisible bowling ball. If you put the bowling ball on the trampoline, you could see how it made a dent in the fabric even if you couldn’t see the ball directly. And if you rolled the golf ball near it, it would change the golf ball’s path.

image

A rogue planet affects space the way the bowling ball warps the trampoline. When light from a distant star passes by a rogue planet, it curves around the invisible world (like how it curves around the star in the animation above). If astronomers on Earth were watching the star, they’d notice it briefly brighten. The shape and duration of this brightness spike lets them know a planet is there, even though they can’t see it.

image

Telescopes on the ground have to look through Earth’s turbulent atmosphere to search for rogue planets. But when our Nancy Grace Roman Space Telescope launches in the mid-2020s, it will give us a much better view of distant stars and rogue planets because it will be located way above Earth’s atmosphere — even higher than the Moon!

Other space telescopes would have to be really lucky to spot these one-in-a-million microlensing signals. But Roman will watch huge patches of the sky for months to catch these fleeting events.

image

Lessons from cosmic castaways

Scientists have come up with different models to explain how different planetary systems form and change over time, but we still don’t know which ones are right. The models make different predictions about rogue planets, so studying these isolated worlds can help us figure out which models work best.

When Roman spots little microlensing starlight blips, astronomers will be able to get a pretty good idea of the mass of the object that caused the signal from how long the blip lasts. Scientists expect the mission to detect hundreds of rogue planets that are as small as rocky Mars — about half the size of Earth — up to ones as big as gas giants, like Jupiter and Saturn.

image

By design, Roman is only going to search a small slice of the Milky Way for rogue planets. Scientists have come up with clever ways to use Roman’s future data to estimate how many rogue planets there are in the whole galaxy. This information will help us better understand whether our solar system is pretty normal or a bit of an oddball compared to the rest of our galaxy.

image

Roman will have such a wide field of view that it will be like going from looking at the cosmos through a peephole to looking through a floor-to-ceiling window. The mission will help us learn about all kinds of other cool things in addition to rogue planets, like dark energy and dark matter, that will help us understand much more about our place in space.

Learn more about the Roman Space Telescope at: https://roman.gsfc.nasa.gov/

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Whats the coolest thing u have seen or discovered???!!!! Like i mean cool as in something that made u nerd out! I used to want to work for nasa but found a love for teaching art instead so i find myself nersing out over the cool research yall put out! Much love from wise county texas!


Tags
7 years ago
Jupiter’s Vibrant Bands Of Light Belts And Dark Regions Appear Primed For Their Close-up During Our

Jupiter’s vibrant bands of light belts and dark regions appear primed for their close-up during our Juno spacecraft’s 10th flyby on Feb. 7. This flyby was a gravity science positioned pass. During orbits that highlight gravity experiments, Juno is positioned toward Earth in a way that allows both transmitters to downlink data in real-time to one of the antennas of our Deep Space Network. All of Juno’s science instruments and the spacecraft’s JunoCam were in operation during the flyby, collecting data that is now being returned to Earth. The science behind this beautifully choreographed image will help us understand the origin and structure of the planet beneath those lush, swirling clouds.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Testing Time for the SLS Engine Section

In schools across the country, many students just finished final exams. Now, part of the world’s most powerful rocket, the Space Launch System (SLS), is about to feel the pressure of testing time. The first SLS engine section has been moving slowly upriver from Michoud Assembly Facility near New Orleans, but once the barge Pegasus docks at our Marshall Space Flight Center in Huntsville, Alabama, the real strength test for the engine section will get started.

image

The engine section is the first of four of the major parts of the core stage that are being tested to make sure SLS is ready for the challenges of spaceflight.

image

The engine section is located at the bottom of the rocket. It has a couple of important jobs. It holds the four RS-25 liquid propellant engines, and it serves as one of two attach points for each of the twin solid propellant boosters. This first engine section will be used only for ground testing. 

image

Of all the major parts of the rocket, the engine section gets perhaps the roughest workout during launch. Millions of pounds of core stage are pushing down, while the engines are pushing up with millions of pounds of thrust, and the boosters are tugging at it from both sides. That’s a lot of stress. Maybe that’s why there’s a saying in the rocket business: “Test like you fly, and fly like you test.”

image

After it was welded at Michoud, technicians installed the thrust structure, engine supports and other internal equipment and loaded it aboard the Pegasus for shipment to Marshall.

image

Once used to transport space shuttle external tanks, Pegasus was modified for the longer SLS core stage by removing 115 feet out of the middle of the barge and added a new 165-foot section with a reinforced main deck. Now as long as a football field, Pegasus – with the help of two tugboats – will transport core stage test articles to Marshall Space Flight Center as well as completed core stages to Stennis Space Center in Mississippi for test firing and then to Kennedy Space Center for launch.

Testing Time For The SLS Engine Section

The test article has no engines, cabling, or computers, but it will replicate all the structures that will undergo the extreme physical forces of launch. The test article is more than 30 feet tall, and weighs about 70,000 pounds. About 3,200 sensors attached to the test article will measure the stress during 59 separate tests. Flight-like physical forces will be applied through simulators and adaptors standing in for the liquid hydrogen tank and RS-25 engines.

image

The test fixture that will surround and secure the engine section weighs about 1.5 million pounds and is taller than a 5-story building. Fifty-five big pistons called “load lines” will impart more than 4.5 million pounds of force vertically and more than 428,000 pounds from the side.

image

The engineers and their computer design tools say the engine section can handle the stress.  It’s the test team’s job prove that it can.

For more information about the powerful SLS rocket, check out: http://nasa.gov/SLS. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/


Tags
4 years ago

Sea Level Rise is on the Rise

As our planet warms, sea levels are rising around the world – and are doing so at an accelerating rate. Currently, global sea level is rising about an eighth of an inch every year.

image

That may seem insignificant, but it’s 30% more than when NASA launched its first satellite mission to measure ocean heights in 1992 – less than 30 years ago. And people already feel the impacts, as seemingly small increments of sea level rise become big problems along coastlines worldwide.

image

Higher global temperatures cause our seas to rise, but how? And why are seas rising at a faster and faster rate? There are two main reasons: melting ice and warming waters.

 The Ice We See Is Getting Pretty Thin

About two-thirds of global sea level rise comes from melting glaciers and ice sheets, the vast expanses of ice that cover Antarctica and Greenland. In Greenland, most of that ice melt is caused by warmer air temperatures that melt the upper surface of ice sheets, and when giant chunks of ice crack off of the ends of glaciers, adding to the ocean.

image

In Antarctica – where temperatures stay low year-round – most of the ice loss happens at the edges of glaciers. Warmer ocean water and warmer air meet at the glaciers’ edges, eating away at the floating ice sheets there.

image

NASA can measure these changes from space. With data from the Ice, Cloud and land Elevation Satellite-2, or ICESat-2, scientists can measure the height of ice sheets to within a fraction of an inch. Since 2006, an average of 318 gigatons of ice per year has melted from Greenland and Antarctica’s ice sheets. To get a sense of how big that is: just one gigaton is enough to cover New York City’s Central Park in ice 1,000 feet deep – almost as tall as the Chrysler Building.

With the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission -- a partnership with the German Research Centre for Geosciences -- scientists can calculate the mass of ice lost from these vast expanses across Greenland and Antarctica.

image

It’s not just glaciers in Antarctica and Greenland that are melting, though. Nearly all glaciers have been melting in the last decade, including those in Alaska, High Mountain Asia, South America, and the Canadian Arctic. Because these smaller glaciers are melting quickly, they contribute about the same amount to sea level rise as meltwater from massive ice sheets.

image

The Water’s Getting Warm

As seawater warms, it takes up more space. When water molecules get warmer, the atoms in those molecules vibrate faster, expanding the volume they take up. This phenomenon is called thermal expansion. It’s an incredibly tiny change in the size of a single water molecule, but added across all the water molecules in all of Earth’s oceans – a single drop contains well over a billion billion molecules – it accounts for about a third of global sea level rise.

image

So Much to See

While sea level is rising globally, it’s not the same across the planet. Sea levels are rising about an eighth of an inch per year on average worldwide. But some areas may see triple that rate, some may not observe any changes, and some may even experience a drop in sea level. These differences are due to ocean currents, mixing, upwelling of cold water from the deep ocean, winds, movements of heat and freshwater, and Earth’s gravitational pull moving water around. When ice melts from Greenland, for example, the drop in mass decreases the gravitational pull from the ice sheet, causing water to slosh to the shores of South America.

That’s where our view from space comes in. We’re launching Sentinel-6 Michael Freilich, an international partnership satellite, to continue our decades-long record of global sea level rise.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

One Hot Year after Another

Globally, 2020 was the hottest year on record, effectively tying 2016, the previous record. Overall, Earth’s average temperature has risen more than 2 degrees Fahrenheit since the 1880s.

image

Temperatures are increasing due to human activities, specifically emissions of greenhouse gases, like carbon dioxide and methane. 

Heat and the energy it carries are what drive our planet: winds, weather, droughts, floods, and more are expressions of heat. The right amount of heat is even one of the things that makes life on Earth possible. But too much heat is changing the way our planet’s systems act.

My World’s on Fire

Higher temperatures drive longer, more intense fire seasons. As rain and snowfall patterns change, some regions are getting drier and more vulnerable to damage, setting the stage for more fires.

image

2020 saw several record-breaking fires, both in Australia in the beginning of the year, and in the western U.S. through northern summer and fall. Smoke from fires in both regions reached so high into the atmosphere that it formed clouds and continues to travel around the globe today.

image

In the Siberian Arctic, unusually high temperatures helped drive at least 19 fires in the region. More than half of them were burning peat soil -- decomposed organic materials -- that stores a lot of carbon. Peat fires release vast amounts of carbon into the atmosphere, potentially leading to even more warming.

image

The Water’s Getting Warm

It wasn’t just fire seasons setting records. 2020 had more named tropical storms in the Atlantic and more storms making landfall in the U.S. than any hurricane season on record.

image

Hurricanes rely on warm ocean water as fuel, and this year, the Atlantic provided. 30 named storms weren’t the only things that made this year’s hurricane season notable.

image

Storms like Eta, Delta, and Iota quickly changed from smaller, weaker tropical storms into more destructive hurricanes. This rapid intensification is complicated, but it’s likely that warmer, more humid weather -- a result of climate change -- helps drive it.

image

The Ice Is Getting Thin

Add enough heat, and even the biggest chunk of ice will melt. That’s true whether we’re talking about the ice cubes in your glass or the vast sheets of ice at our planet’s poles. Right now, the Arctic region is warming about three times faster than the rest of our planet, which has some major effects both locally and globally.

image

This year, Arctic sea ice hit a near-record low. Sea ice is actually made of frozen ocean water, and it grows and thaws with the seasons, typically reaching an annual minimum extent in September.

image

Warmer ocean water led to more ice melting this year, and 2020’s annual minimum extent continued a long trend of shrinking Arctic sea ice extent.

A Long Trend

We study Earth and how it’s changing from the ground, the sky, and space. Using data from sensors all around the planet, we calculate the global average temperature, working with our partners at NOAA.

Many other organizations also track global temperature using their own instruments and methods, and they all match remarkably well. The last seven years were the hottest seven years on record. Earth is getting warmer.

image

We also study the effects of increasing temperatures, like the melting sea ice and longer fire seasons mentioned above. Additionally, we can study the cause of climate change from space, with a bird’s eye view of increasing carbon in the atmosphere.

image

The planet is changing because of human activities. We’re working together with other agencies to monitor changes and understand what this means for people in the future.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What from your job have you learned that you think everyone on Earth should know?


Tags
2 months ago

5 Unpredictable Things Swift Has Studied (and 1 It’s Still Looking For)

Our Neil Gehrels Swift Observatory — Swift for short — is celebrating its 20th anniversary! The satellite studies cosmic objects and events using visible, ultraviolet, X-ray, and gamma-ray light. Swift plays a key role in our efforts to observe our ever-changing universe. Here are a few cosmic surprises Swift has caught over the years — plus one scientists hope to see.

This sequence shows X-rays from the initial flash of GRB 221009A that could be detected for weeks as dust in our galaxy scattered the light back to us. This resulted in the appearance of an extraordinary set of expanding rings, here colored magenta, with a bright yellow spot at the center. The images were captured over 12 days by the X-ray Telescope aboard NASA’s Neil Gehrels Swift Observatory. Credit: NASA/Swift/A. Beardmore (University of Leicester)

#BOAT

Swift was designed to detect and study gamma-ray bursts, the most powerful explosions in the universe. These bursts occur all over the sky without warning, with about one a day detected on average. They also usually last less than a minute – sometimes less than a few seconds – so you need a telescope like Swift that can quickly spot and precisely locate these new events.

In the fall of 2022, for example, Swift helped study a gamma-ray burst nicknamed the BOAT, or brightest of all time. The image above depicts X-rays Swift detected for 12 days after the initial flash. Dust in our galaxy scattered the X-ray light back to us, creating an extraordinary set of expanding rings.

This gif illustrates what happens when an unlucky star strays too close to a monster black hole. Gravitational forces create intense tides that break the star apart into a stream of gas. The trailing part of the stream escapes the system, while the leading part swings back around, surrounding the black hole with a disk of debris. This cataclysmic phenomenon is called a tidal disruption event. This image is watermarked “Artist’s concept.” Credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR)

Star meets black hole

Tidal disruptions happen when an unlucky star strays too close to a black hole. Gravitational forces break the star apart into a stream of gas, as seen above. Some of the gas escapes, but some swings back around the black hole and creates a disk of debris that orbits around it.

These events are rare. They only occur once every 10,000 to 100,000 years in a galaxy the size of our Milky Way. Astronomers can’t predict when or where they’ll pop up, but Swift’s quick reflexes have helped it observe several tidal disruption events in other galaxies over its 20-year career.

This gif illustrates various features of a galaxy's outburst. The black hole in the center is surrounded by a puffy orange disk of gas and dust. Above and below the center of the disk are blue cones representing the corona. At the start of the sequence, a flash of purple-white light travels from the edges of the disk inward, until the whole thing is illuminated. That light fades and then there is a flare of blue light above and below the center. This image is watermarked “Artist’s concept.” Credit: NASA’s Goddard Space Flight Center

Active galaxies

Usually, we think of galaxies – and most other things in the universe – as changing so slowly that we can’t see the changes. But about 10% of the universe’s galaxies are active, which means their black hole-powered centers are very bright and have a lot going on. They can produce high-speed particle jets or flares of light. Sometimes scientists can catch and watch these real-time changes.

For example, for several years starting in 2018, Swift and other telescopes observed changes in a galaxy’s X-ray and ultraviolet light that led them to think the galaxy’s magnetic field had flipped 180 degrees.

This animation depicts a giant flare on the surface of a magnetar. The object’s glowing surface, covered in swirls of lighter and darker blue, fills the lower right corner of the image. The powerful magnetic field surrounding this stellar corpse is represented by thin white speckled loops that arc off the surface and continue past the edges of the image. A starquake rocks the surface of the magnetar, abruptly affecting its magnetic field and producing a quick, powerful pulse of X-rays and gamma rays, represented by a magenta glow. The event also ejects electrons and positrons traveling at about 99% the speed of light. These are represented by a blue blob, which follows the gamma rays heading towards the upper left and off-screen. The image is watermarked “Artist’s concept.” Credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR)

Magnetic star remnants

Magnetars are a type of neutron star, a very dense leftover of a massive star that exploded in a supernova. Magnetars have the strongest magnetic fields we know of — up to 10 trillion times more intense than a refrigerator magnet and a thousand times stronger than a typical neutron star’s.

Occasionally, magnetars experience outbursts related to sudden changes in their magnetic fields that can last for months or even years. Swift detected such an outburst from a magnetar in 2020. The satellite’s X-ray observations helped scientists determine that the city-sized object was rotating once every 10.4 seconds.

This gif shows six snapshots of comet 2I/Borisov as it traveled through our solar system. They were captured with the Ultraviolet/Optical Telescope aboard NASA’s Neil Gehrels Swift Observatory. The first four images are a dark purple color with streaks of white traveling across them. Borisov is a faint white smudge in the center. The fifth image has a blue background with the same white streaks. The last image is just the blue background. The image is watermarked with “Ultraviolet” on the left side. On the right are rotating labels showing the date of each snapshot: Sept 27, Nov 1, Dec 1, Dec 21, Jan 14, Feb 17. Credit: NASA/Swift/Z. Xing et al. 2020

Comets

Swift has also studied comets in our own solar system. Comets are town-sized snowballs of frozen gases, rock, and dust. When one gets close to our Sun, it heats up and spews dust and gases into a giant glowing halo.

In 2019, Swift watched a comet called 2I/Borisov. Using ultraviolet light, scientists calculated that Borisov lost enough water to fill 92 Olympic-size swimming pools! (Another interesting fact about Borisov: Astronomers think it came from outside our solar system.)

This animation shows a spacecraft, NASA’s Neil Gehrels Swift Observatory, in orbit above Earth. Swift is composed of a long cylinder at the center, wrapped in golden foil. At the front of the cylinder is a silver sunshade protruding over several telescopes. Two black solar arrays are attached on either side of the cylinder, extending like wings. The animation begins with a view of Swift with Earth in the background. Then the camera pans along one side of the spacecraft until Swift is seen looking out into space. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

What's next for Swift?

Swift has studied a lot of cool events and objects over its two decades, but there are still a few events scientists are hoping it’ll see.

Swift is an important part of a new era of astrophysics called multimessenger astronomy, which is where scientists use light, particles, and space-time ripples called gravitational waves to study different aspects of cosmic events.

A cartoon of different cosmic messengers. On top are particles, which show as four different colored dots that have trails appearing behind them, evoking movement. In the middle is light, which is shown as a wave moving through space. On the bottom are gravitational waves. These are shown as a series of ovals that expand and contract in sequence to evoke the feeling of an elastic tube that is growing and shrinking in width. The image is watermarked “Artist’s concept.” Credit: NASA’s Goddard Space Flight Center

In 2017, Swift and other observatories detected light and gravitational waves from the same event, a gamma-ray burst, for the first time. But what astronomers really want is to detect all three messengers from the same event.

As Swift enters its 20th year, it’ll keep watching the ever-changing sky.

Keep up with Swift through NASA Universe on X, Facebook, and Instagram. And make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • thechattysecretkeeper
    thechattysecretkeeper liked this · 1 year ago
  • xvollzeitjxnkiex
    xvollzeitjxnkiex liked this · 1 year ago
  • whatsloveanyway
    whatsloveanyway liked this · 3 years ago
  • littlebunnyman
    littlebunnyman reblogged this · 3 years ago
  • sweetandsadsblog
    sweetandsadsblog liked this · 3 years ago
  • goosebumpsgoosebumps
    goosebumpsgoosebumps liked this · 3 years ago
  • glam-rock-space-wizard
    glam-rock-space-wizard liked this · 4 years ago
  • quartzbabe
    quartzbabe liked this · 4 years ago
  • chaotic-hypnotic-erotic
    chaotic-hypnotic-erotic reblogged this · 4 years ago
  • pinkylover68
    pinkylover68 liked this · 4 years ago
  • ulneon-zhuna
    ulneon-zhuna liked this · 4 years ago
  • mischief02
    mischief02 liked this · 4 years ago
  • chaotic-hypnotic-erotic
    chaotic-hypnotic-erotic liked this · 4 years ago
  • aif0s-w
    aif0s-w liked this · 4 years ago
  • suki-thesapphicfairy
    suki-thesapphicfairy liked this · 4 years ago
  • soldiercastiel
    soldiercastiel reblogged this · 4 years ago
  • soldiercastiel
    soldiercastiel liked this · 4 years ago
  • eyesareblind
    eyesareblind reblogged this · 4 years ago
  • eyesareblind
    eyesareblind liked this · 4 years ago
  • sta-r-gazing
    sta-r-gazing reblogged this · 4 years ago
  • sta-r-gazing
    sta-r-gazing liked this · 4 years ago
  • venus-et-cupido
    venus-et-cupido liked this · 4 years ago
  • love-broadway-books
    love-broadway-books liked this · 4 years ago
  • betelgezu
    betelgezu liked this · 4 years ago
  • blazzium
    blazzium liked this · 4 years ago
  • janinethebeann
    janinethebeann liked this · 4 years ago
  • keeponmovingss
    keeponmovingss liked this · 4 years ago
  • britwitch
    britwitch reblogged this · 4 years ago
  • gokottamerak
    gokottamerak liked this · 4 years ago
  • skeptical-scorpio
    skeptical-scorpio liked this · 4 years ago
  • illuminatiblog
    illuminatiblog liked this · 4 years ago
  • nostalgicproteinbag
    nostalgicproteinbag liked this · 4 years ago
  • freigeist5
    freigeist5 reblogged this · 4 years ago
  • freigeist5
    freigeist5 liked this · 4 years ago
  • agnesmarie
    agnesmarie liked this · 4 years ago
  • localdeadgirl1999
    localdeadgirl1999 liked this · 4 years ago
  • trinns
    trinns liked this · 4 years ago
  • annapolisrose
    annapolisrose liked this · 4 years ago
  • dramaticowl
    dramaticowl liked this · 4 years ago
  • morfex
    morfex liked this · 4 years ago
  • fabien-euskadi
    fabien-euskadi reblogged this · 4 years ago
  • fabien-euskadi
    fabien-euskadi liked this · 4 years ago
  • onlyuandnomore
    onlyuandnomore liked this · 4 years ago
  • lotx-s
    lotx-s liked this · 4 years ago
  • luvcab
    luvcab liked this · 4 years ago
  • ezbreezythuggergirl
    ezbreezythuggergirl liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags