And That Is A Wrap!

And That Is A Wrap!

And that is a wrap!

Get sucked into the black hole excitement? Find out more about these unique objects and the missions we have to study them, here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

3 years ago

Download Software Used to Get Rovers to the Red Planet

Watching our Perseverance rover safely land on the surface of Mars is the kind of historic feat that gets our adventure-loving hearts racing.

Download Software Used To Get Rovers To The Red Planet

Launching and landing rovers on Mars requires overcoming challenges like defying gravity on two planets, surviving the extreme heat of atmospheric entry, and avoiding rocky obstacles. This takes more than just rocket science – it takes incredible software too.

Did you know that some of the same tried and tested software that helped ensure a safe arrival for Perseverance (and its predecessor, Curiosity) can be downloaded – by you...for free...right now?

Download Software Used To Get Rovers To The Red Planet

Our 2021-22 Software Catalog is full of codes made for space that can be used by entrepreneurs, teachers, gamers, or just about anyone. Whether you are curious about the Martian atmosphere, want to visualize the inside of a volcano, or have an application we’ve never even considered, our software may be able to help. Check out our full site, updated regularly with the latest codes available for download.

Here are a few examples of what you could do with our software!

1. Simulate the Martian atmosphere to prepare spacecrafts for landing

Download Software Used To Get Rovers To The Red Planet

To prepare for exactly what a spacecraft will face on landing day, no matter the location scientists choose, we created software that simulates the Martian atmosphere. The code, Mars (GRAM), is now available to anyone.

We also have a version that simulates Earth's atmosphere, allowing users (especially those in the world of drone design) a way to replicate and design for, potentially dangerous conditions without ever stepping away from the computer.

2. Explore the Red Planet virtually from home with help from the Curiosity rover team

Originally developed for scientists and engineers working on the Curiosity rover mission, OnSight allowed the team a virtual way to walk on and look around Mars. Using an immersive display, such as a virtual reality headset, scientists could see the Red Planet the way a rover would.

This software can also be used to provide virtual experiences of places here on Earth, such as caves and lava fields.

3. Dodge disasters with a risk management tool made for space missions

Download Software Used To Get Rovers To The Red Planet

When preparing for complex space missions, like the upcoming Mars Sample Return mission, it’s crucial to examine how different elements, independently and collectively, impact the probability of success.

But risk management has become an important tool for businesses of all disciplines, from engineering to accounting – and the Space Mission Architecture and Risk Analysis Tool (SMART) could help.

Sound interesting? The NASA software catalog has these and more than 800 additional codes ready for download.

You can also follow our Technology Transfer program on Twitter to learn more about software and technology that can be put to use on Earth.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

How do you guys help with climate change?


Tags
5 years ago

What's the most beautiful natural scene uou've ever seen personally, as in Aurora Borealis, volcanic eruption, or something that made you seem like the Earth should be treasured?


Tags
5 years ago

Our Newest Solar Scope Is Ready for a Balloon Ride 🎈

Along with the Korea Astronomy and Space Science Institute, or KASI, we're getting ready to test a new way to see the Sun, high over the New Mexico desert.

A balloon — which looks a translucent white pumpkin, but large enough to hug a football field — will soon take flight, carrying a solar scope called BITSE. BITSE is a coronagraph, a special kind of telescope that blocks the bright face of the Sun to reveal its dimmer atmosphere, called the corona. BITSE stands for Balloon-borne Investigation of Temperature and Speed of Electrons in the corona.

image

Its goal? Explaining how the Sun spits out the solar wind, the stream of charged particles that blows constantly from the Sun. Scientists generally know it forms in the corona, but exactly how it does so is a mystery.

The solar wind is important because it’s the stuff that fills the space around Earth and all the other planets in our solar system. And, understanding how the solar wind works is key to predicting how solar eruptions travel. It’s a bit like a water slide: The way it flows determines how solar storms barrel through space. Sometimes, those storms crash into our planet’s magnetic field, sparking disturbances that can interfere with satellites and communications signals we use every day, like radio or GPS.

image

Right now, scientists and engineers are in Fort Sumner, New Mexico, preparing to fly BITSE up to the edge of the atmosphere. BITSE will take pictures of the corona, measuring the density, temperature and speed of negatively charged particles — called electrons — in the solar wind. Scientists need these three things to answer the question of how the solar wind forms.

One day, scientists hope to send an instrument like BITSE to space, where it can study the Sun day in and day out, and help us understand the powerful forces that push the solar wind out to speeds of 1 million miles per hour. BITSE’s balloon flight is an important step towards space, since it will help this team of scientists and engineers fine-tune their tech for future space-bound missions.  

image

Hours before sunrise, technicians from our Columbia Scientific Balloon Facility’s field site in Fort Sumner will ready the balloon for flight, partially filling the large plastic envelope with helium. The balloon is made of polyethylene — the same stuff grocery bags are made of — and is about as thick as a plastic sandwich bag, but much stronger. As the balloon rises higher into the sky, the gas in the balloon expands and the balloon grows to full size.

BITSE will float 22 miles over the desert. For at least six hours, it will drift, taking pictures of the Sun’s seething hot atmosphere. By the end of the day, it will have collected 40 feature-length movies’ worth of data.

image

BITSE’s journey to the sky began with an eclipse. Coronagraphs use a metal disk to mimic a total solar eclipse — but instead of the Moon sliding in between the Sun and Earth, the disk blocks the Sun’s face to reveal the dim corona. During the Aug. 21, 2017, total eclipse, our scientists tested key parts of this instrument in Madras, Oregon.

image

Now, the scientists are stepping out from the Moon’s shadow. A balloon will take BITSE up to the edge of the atmosphere. Balloons are a low-cost way to explore this part of the sky, allowing scientists to make better measurements and perform tests they can’t from the ground.

BITSE carries several important technologies. It’s built on one stage of lens, rather than three, like traditional coronagraphs. That means it’s designed more simply, and less likely to have a mechanical problem. And, it has a couple different sets of specialized filters that capture different kinds of light: polarized light — light waves that bob in certain directions — and specific wavelengths of light. The combination of these images provides scientists with information on the density, temperature and speed of electrons in the corona.

image

More than 22 miles over the ground, BITSE will fly high above birds, airplanes, weather and the blue sky itself. As the atmosphere thins out, there are less air particles to scatter light. That means at BITSE’s altitude, the sky is dimmer. These are good conditions for a coronagraph, whose goal is taking images of the dim corona. But even the upper atmosphere is brighter than space.

That’s why scientists are so eager to test BITSE on this balloon, and develop their instrument for a future space mission. The solar scope is designed to train its eyes on a slice of the corona that’s not well-studied, and key to solar wind formation. One day, a version of BITSE could do this from space, helping scientists gather new clues to the origins of the solar wind.  

image

At the end of BITSE’s flight, the crew at the Fort Sumner field site will send termination commands, kicking off a sequence that separates the instrument and balloon, deploys the instrument’s parachute, and punctures the balloon. An airplane circling overhead will keep watch over the balloon’s final moments, and relay BITSE’s location. At the end of its flight, far from where it started, the coronagraph will parachute to the ground. A crew will drive into the desert to recover both the balloon and BITSE at the end of the day.

For more information on how we use balloons for high-altitude science missions, visit: https://www.nasa.gov/scientificballoons

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What’s aboard SpaceX’s Dragon?

On Dec 5. 2019, a SpaceX Falcon 9 rocket blasted off from Cape Canaveral Air Force Station in Florida carrying a Dragon cargo capsule filled with dozens of scientific experiments. Those experiments look at everything from malting barley in microgravity to the spread of fire.

What’s Aboard SpaceX’s Dragon?

Not only are the experiments helping us better understand life in space, they also are giving us a better picture of our planet and benefiting humanity back on Earth. 

📸 A Better Picture of Earth 🌏

Every material on the Earth’s surface – soil, rocks, vegetation, snow, ice and human-made objects – reflects a unique spectrum of light. The Hyperspectral Imager Suite (HISUI) takes advantage of this to identify specific materials in an image. It could be useful for tasks such as resource exploration and applications in agriculture, forestry and other environmental areas.

image

🌱 Malting Barley in Microgravity 🌱

Many studies of plants in space focus on how they grow in microgravity. The Malting ABI Voyager Barley Seeds in Microgravity experiment is looking at a different aspect of plants in space: the malting process. Malting converts starches from grain into various sugars that can be used for brewing, distilling and food production. The study compares malt produced in space and on the ground for genetic and structural changes, and aims to identify ways to adapt it for nutritional use on spaceflights.

image

🛰️ A First for Mexico 🛰️

AztechSat-1, the first satellite built by students in Mexico for launch from the space station, is smaller than a shoebox but represents a big step for its builders. Students from a multidisciplinary team at Universidad Popular Autónoma del Estado de Puebla in Puebla, Mexico, built the CubeSat. This investigation demonstrates communication within a satellite network in low-Earth orbit. Such communication could reduce the need for ground stations, lowering the cost and increasing the number of data downloads possible for satellite applications.

image

🚀 Checking for Leaks 🚀

Nobody wants a spacecraft to spring a leak – but if it happens, the best thing you can do is locate and fix it, fast. That’s why we launched the first Robotic External Leak Locator (RELL) in 2015. Operators can use RELL to quickly detect leaks outside of station and help engineers formulate a plan to resolve an issue. On this latest commercial resupply mission, we launched the Robotic Tool Stowage (RiTS), a docking station that allows the RELL units to be stored on the outside of space station, making it quicker and simpler to deploy the instruments.

image

🔥 The Spread of Fire 🔥

Understanding how fire spreads in space is crucial for the safety of future astronauts and for controlling fire here on Earth. The Confined Combustion investigation examines the behavior of flame as it spreads in differently-shaped spaces in microgravity. Studying flames in microgravity gives researchers a chance to look at the underlying physics and basic principles of combustion by removing gravity from the equation.

image

💪 Staying Strong 💪

Here on Earth you might be told to drink milk to grow up with strong bones, but in space, you need a bit more than that. Astronauts in space have to exercise for hours a day to prevent substantial bone and muscle loss. A new experiment, Rodent Research-19, is seeing if there is another way to prevent the loss by targeting signaling pathways in your body at the molecular level. The results could also support treatments for a wide range of conditions that cause muscle and bone loss back here on Earth.

image

Want to learn about more investigations heading to the space station (or even ones currently under way)? Make sure to follow @ISS_Research on Twitter and Space Station Research and Technology News on Facebook. 

If you want to see the International Space Station with your own eyes, check out Spot the Station to see it pass over your town.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Hello! I have always wondered about how the clouds work, it seems like they are just gas in the air, but what makes them appear so often? Or how do they form? And how and why do the block out the sun if they're just air?


Tags
8 years ago

Around the World 100,000 Times

The International Space Station is a microgravity laboratory in which an international crew of six people live and work while traveling at a speed of five miles per second (or 17,500 miles per hour), orbiting Earth every 90 minutes.

Monday, May 16, marks the International Space Station’s 100,000th orbit!

image

That’s more than 2,643,342,240 miles traveled! Which is also like 10 round trips to Mars, OR nearly the distance to Neptune!

image

The space station has been in orbit for over 17 years, and during that time, over 1,922 research investigations have been performed. More than 1,200 scientific results publications have been produced as a result. 

Important studies like the VEGGIE experiment, which is working to grow plants in microgravity, and the Twin’s Study, which is studying the impacts of microgravity on the human body, are helping us on our journey to Mars. Using this unique orbiting laboratory as a place to conduct research is helping us learn important things for future deep space missions. 

image

There have even been 222 different people that have visited the space station. This includes the current crew that is working and living on orbit. 

Did you know that the space station is the third brightest object in the sky? If you know when and where to look up, you can spot it on your own! Find out when and where to look up HERE. 

On Snapchat? Watch today’s Live Story to discover more about the orbiting laboratory and get a tour of the station! You can also add ‘nasa’ on Snapchat to get a regular dose of space. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Will normal uv protection sunglasses work?

Unfortunately no. They do not block out enough of the sunlight so you could still burn your eyes if you were to use them to look at the Sun. The ISO 12312-2 compliant eclipse glasses are so dark you literally can’t see anything out of them unless you are looking at the Sun. You can find trusted vendors through the links at https://eclipse2017.nasa.gov/safety If you can’t get them in time, you can also make a pinhole projector  https://eclipse.aas.org/eye-safety/projection and watch the eclipse with that. 


Tags
5 years ago

Farewell to the Van Allen Probes

After seven years of studying the radiation around Earth, the Van Allen Probes spacecraft have retired.

image

Originally slated for a two-year mission, these two spacecraft studied Earth's radiation belts — giant, donut-shaped clouds of particles surrounding Earth — for nearly seven years. The mission team used the last of their propellant this year to place the spacecraft into a lower orbit that will eventually decay, allowing the Van Allen Probes to re-enter and burn up in Earth's atmosphere.

image

Earth's radiation belts exist because energized charged particles from the Sun and other sources in space become trapped in our planet's huge magnetic field, creating vast regions around Earth that teem with radiation. This is one of the harshest environments in space — and the Van Allen Probes survived more than three times longer than planned orbiting through this intense region.

The shape, size and intensity of the radiation belts change, meaning that satellites — like those used for telecommunications and GPS — can be bombarded with a sudden influx of radiation. The Van Allen Probes shed new light on what invisible forces drive these changes — like waves of charged particles and electromagnetic fields driven by the Sun, called space weather. 

image

Here are a few scientific highlights from the Van Allen Probes — from the early days of the mission to earlier this year:

The Van Allen belts were first discovered in 1958, and for decades, scientists thought there were only two concentric belts. But, days after the Van Allen Probes launched, scientists discovered that during times of intense solar activity, a third belt can form.

The belts are composed of charged particles and electromagnetic fields and can be energized by different types of plasma waves. One type, called electrostatic double layers, appear as short blips of enhanced electric field. During one observing period, Probe B saw 7,000 such blips repeatedly pass over the spacecraft in a single minute!

During big space weather storms, which are ultimately caused by activity on the Sun, ions — electrically charged atoms or molecules — can be pushed deep into Earth’s magnetosphere. These particles carry electromagnetic currents that circle around the planet and can dramatically distort Earth’s magnetic field.

image

Across space, fluctuating electric and magnetic fields can create what are known as plasma waves. These waves intensify during space weather storms and can accelerate particles to incredible speeds. The Van Allen Probes found that one type of plasma wave known as hiss can contribute greatly to the loss of electrons from the belts.

The Van Allen belts are composed of electrons and ions with a range of energies. In 2015, research from the Van Allen Probes found that, unlike the outer belt, there were no electrons with energies greater than a million electron volts in the inner belt.

Plasma waves known as whistler chorus waves are also common in our near-Earth environment. These waves can travel parallel or at an angle to the local magnetic field. The Van Allen Probes demonstrated the two types of waves cannot be present simultaneously, resulting in greater radiation belt particle scattering in certain areas.

Very low frequency chorus waves, another variety of plasma waves, can pump up the energy of electrons to millions of electronvolts. During storm conditions, the Van Allen Probes found these waves can hugely increase the energy of particles in the belts in just a few hours.  

image

Scientists often use computer simulation models to understand the physics behind certain phenomena. A model simulating particles in the Van Allen belts helped scientists understand how particles can be lost, replenished and trapped by Earth’s magnetic field.

The Van Allen Probes observed several cases of extremely energetic ions speeding toward Earth. Research found that these ions’ acceleration was connected to their electric charge and not to their mass.

The Sun emits faster and slower gusts of charged particles called the solar wind. Since the Sun rotates, these gusts — the fast wind — reach Earth periodically. Changes in these gusts cause the extent of the region of cold ionized gas around Earth — the plasmasphere — to shrink. Data from the Van Allen Probes showed that such changes in the plasmasphere fluctuated at the same rate as the solar rotation — every 27 days.

Though the mission has ended, scientists will use data from the Van Allen Probes for years to come. See the latest Van Allen Probes science at nasa.gov/vanallen.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
A color GIF looking down at the Ingenuity Mars Helicopter as it begins to spin its two counter-rotating blades. The small craft sits on red, rocky Martian terrain. There is red dust on the helicopter’s solar panel. Credit: NASA/JPL-Caltech/ASU

What We Learned from Flying a Helicopter on Mars

A color GIF of NASA's Ingenuity Mars Helicopter as it hovers slowly above the dusty, rocky Martian landscape. Credit: NASA/JPL-Caltech/ASU/MSSS

The Ingenuity Mars Helicopter made history – not only as the first aircraft to perform powered, controlled flight on another world – but also for exceeding expectations, pushing the limits, and setting the stage for future NASA aerial exploration of other worlds.

Built as a technology demonstration designed to perform up to five experimental test flights over 30 days, Ingenuity performed flight operations from the Martian surface for almost three years. The helicopter ended its mission on Jan. 25, 2024, after sustaining damage to its rotor blades during its 72nd flight.

So, what did we learn from this small but mighty helicopter?

We can fly rotorcraft in the thin atmosphere of other planets.

Ingenuity proved that powered, controlled flight is possible on other worlds when it took to the Martian skies for the first time on April 19, 2021.

Flying on planets like Mars is no easy feat: The Red Planet has a significantly lower gravity – one-third that of Earth’s – and an extremely thin atmosphere, with only 1% the pressure at the surface compared to our planet. This means there are relatively few air molecules with which Ingenuity’s two 4-foot-wide (1.2-meter-wide) rotor blades can interact to achieve flight.

Ingenuity performed several flights dedicated to understanding key aerodynamic effects and how they interact with the structure and control system of the helicopter, providing us with a treasure-trove of data on how aircraft fly in the Martian atmosphere.

Now, we can use this knowledge to directly improve performance and reduce risk on future planetary aerial vehicles.

NASA’s Ingenuity Mars Helicopter took this black-and-white photo while hovering over the Martian surface on April 19, 2021, during the first instance of powered, controlled flight on another planet. It used its navigation camera, which is mounted in its fuselage and pointed directly downward to track the ground during flight. The image shows the shadow of the Ingenuity Mars Helicopter on the surface of Mars. The black shadow of the helicopter is very crisp and clear against the white backdrop of the Martian sandy surface. Its wing-shaped rotors jut out from the sides of its square body, and from each corner is a thin leg that has a small ball shape at the end. Credit: NASA/JPL-Caltech

Creative solutions and “ingenuity” kept the helicopter flying longer than expected.

Over an extended mission that lasted for almost 1,000 Martian days (more than 33 times longer than originally planned), Ingenuity was upgraded with the ability to autonomously choose landing sites in treacherous terrain, dealt with a dead sensor, dusted itself off after dust storms, operated from 48 different airfields, performed three emergency landings, and survived a frigid Martian winter.

Fun fact: To keep costs low, the helicopter contained many off-the-shelf-commercial parts from the smartphone industry - parts that had never been tested in deep space. Those parts also surpassed expectations, proving durable throughout Ingenuity’s extended mission, and can inform future budget-conscious hardware solutions.

A split screen image. The left side of the image shows a close-up photo of an Ingenuity team member inspecting NASA's Ingenuity Mars Helicopter while it was still here on Earth. Across the image are bold white letters that spell out "DREAM." The right side of the image shows a close-up photo of Ingenuity after it landed on Mars. The helicopter sits on the dusty, rocky surface of the planet. Across the image are bold white letters that spell out "REALITY." Credit:NASA/JPL-Caltech

There is value in adding an aerial dimension to interplanetary surface missions.

Ingenuity traveled to Mars on the belly of the Perseverance rover, which served as the communications relay for Ingenuity and, therefore, was its constant companion. The helicopter also proved itself a helpful scout to the rover.

After its initial five flights in 2021, Ingenuity transitioned to an “operations demonstration,” serving as Perseverance’s eyes in the sky as it scouted science targets, potential rover routes, and inaccessible features, while also capturing stereo images for digital elevation maps.

Airborne assets like Ingenuity unlock a new dimension of exploration on Mars that we did not yet have – providing more pixels per meter of resolution for imaging than an orbiter and exploring locations a rover cannot reach.

A color-animated image sequence of NASA’s Mars Perseverance rover shows the vehicle on Mars's red, dusty surface. The six-wheeled rover’s camera “head” faces the viewer and then turns to the left, where, on the ground, sits the small Ingenuity Mars Helicopter. Credit: NASA/JPL-Caltech/MSSS

Tech demos can pay off big time.

Ingenuity was flown as a technology demonstration payload on the Mars 2020 mission, and was a high risk, high reward, low-cost endeavor that paid off big. The data collected by the helicopter will be analyzed for years to come and will benefit future Mars and other planetary missions.

Just as the Sojourner rover led to the MER-class (Spirit and Opportunity) rovers, and the MSL-class (Curiosity and Perseverance) rovers, the team believes Ingenuity’s success will lead to future fleets of aircraft at Mars.

In general, NASA’s Technology Demonstration Missions test and advance new technologies, and then transition those capabilities to NASA missions, industry, and other government agencies. Chosen technologies are thoroughly ground- and flight-tested in relevant operating environments — reducing risks to future flight missions, gaining operational heritage and continuing NASA’s long history as a technological leader.

You can fall in love with robots on another planet.

Following in the tracks of beloved Martian rovers, the Ingenuity Mars Helicopter built up a worldwide fanbase. The Ingenuity team and public awaited every single flight with anticipation, awe, humor, and hope.

Check out #ThanksIngenuity on social media to see what’s been said about the helicopter’s accomplishments.

Learn more about Ingenuity’s accomplishments here. And make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • nessieac
    nessieac liked this · 2 months ago
  • avocadocannibal
    avocadocannibal liked this · 2 months ago
  • yasu-ore
    yasu-ore liked this · 2 months ago
  • vilewile
    vilewile liked this · 2 months ago
  • been-here-since-76
    been-here-since-76 liked this · 2 months ago
  • martin2132013
    martin2132013 reblogged this · 2 years ago
  • john-erby
    john-erby liked this · 3 years ago
  • mischief02
    mischief02 liked this · 3 years ago
  • physicla
    physicla liked this · 3 years ago
  • 2reputationpegacorns
    2reputationpegacorns liked this · 3 years ago
  • stworzonka
    stworzonka reblogged this · 3 years ago
  • stworzonka
    stworzonka liked this · 3 years ago
  • 0ct0bre
    0ct0bre liked this · 4 years ago
  • wwickedwedgiewoman
    wwickedwedgiewoman liked this · 4 years ago
  • chocolatecrowncreator
    chocolatecrowncreator liked this · 4 years ago
  • ashnagog
    ashnagog liked this · 4 years ago
  • sonderwalker
    sonderwalker reblogged this · 4 years ago
  • aureliamorningstar24
    aureliamorningstar24 liked this · 4 years ago
  • farawayleaf
    farawayleaf liked this · 4 years ago
  • mainromanoff
    mainromanoff reblogged this · 4 years ago
  • sociallyawkwardbirb
    sociallyawkwardbirb liked this · 4 years ago
  • imaextragone
    imaextragone liked this · 4 years ago
  • starzita01
    starzita01 liked this · 4 years ago
  • little-pile-of-ashes
    little-pile-of-ashes liked this · 4 years ago
  • purpleskeletonghostcreator
    purpleskeletonghostcreator liked this · 4 years ago
  • cosmicgemini7
    cosmicgemini7 liked this · 4 years ago
  • kleinerwitz
    kleinerwitz liked this · 4 years ago
  • dragondemongod
    dragondemongod liked this · 4 years ago
  • vergeofinsanity
    vergeofinsanity liked this · 4 years ago
  • alicwww
    alicwww liked this · 4 years ago
  • twocatsam-blog
    twocatsam-blog reblogged this · 4 years ago
  • kittylilyheart
    kittylilyheart liked this · 5 years ago
  • bethelnie-blog
    bethelnie-blog liked this · 5 years ago
  • nerdycashheroshepherd
    nerdycashheroshepherd liked this · 5 years ago
  • xoxo-hg-blog1
    xoxo-hg-blog1 liked this · 5 years ago
  • minimalisticmonstermash
    minimalisticmonstermash liked this · 5 years ago
  • snailswithwings
    snailswithwings reblogged this · 5 years ago
  • 7tseven
    7tseven liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags