Two Hampton Roads high schools will soon have their creations judged by NASA to see if they make it aboard the International Space Station. One is a food recipe for astronauts. The other is hardware for the space station.
Students from Phoebus High School prepare their breakfast dish at HUNCH's Preliminary Culinary Challenge at NASA's Langley Research Center.
Credits: NASA/David C. Bowman
Both projects are part of a NASA program called HUNCH, or High school students United with NASA to Create Hardware.
NASA’s Langley Research Center in Hampton, Virginia, hosted a preliminary culinary challenge March 5, where two schools cooked up a breakfast entrée. The shrimp and grits with gouda cheese dish from Phoebus High School in Hampton made it to the final competition at NASA’s Johnson Space Center in Houston scheduled for April 26.
Their work will be judged by Johnson Food Lab personnel, industry professionals, the space station program office, and astronauts for quality and taste. They’ll also be rated on a research paper and presentation video. The winning entree will be created by the Johnson Space Food Lab and sent up to the space station for astronauts to enjoy.
Space Hardware
Poquoson High School student Travis Redman, left, talks with Glenn Johnson, a design engineer at NASA's Johnson Space Center, about an astronaut boot that would lock in place preventing floating in a no gravity environment.
Credits: NASA/George Homich
Langley also hosted a critical design review March 6, when four schools showed off the real-world products they fabricated to tackle challenges faced by astronauts living in space. The team from Poquoson High School in Poquoson, Virginia, was selected as a finalist and faces a final design and prototyping review April 25 at Johnson.
The hardware includes a pin kit, can squisher, exercise harness, crew reminder tool, location app tool, and hygiene caddy. Many of the hardware projects are items personally requested by space station crew.
The North Carolina School of Science and Mathematics, who also presented their projects at Langley, will join Poquoson High to present their works at Johnson. The projects the team from the Durham-based school had were an augmented reality object identification annotation tool, automatic location stowage system, and a single point exercise harness.
“The HUNCH Program can change the trajectory of a student’s life, by providing various avenues beyond the STEM (science, technology, engineering and math) field and opportunities to participate in the global effort to research in space,” said Yolanda Watford Simmons, manager of Langley’s HUNCH program.
In 2015, a culinary team from Phoebus High won the culinary challenge and their entrée, Jamaican rice and beans with coconut milk, is now included in an astronaut cookbook. Read more on their success here.
For more information on HUNCH, go here.
Eric Gillard NASA Langley Research Center
@nasa
Orion Launch Abort System Motor Gets Fired-up About the Journey to Mars
Applause resounded from NASA and its partners as they watched Orion’s jettison motor generate 40,000 pounds of thrust in just a blink of an eye, preparing the spacecraft for its first integrated mission with the Space Launch System rocket.
Onlookers had just witnessed a 1.5-second jettison motor test firing at Aerojet Rocketdyne’s facility in Sacramento, California.
The Orion launch abort system (LAS) is designed to protect astronauts in the unlikely event there is an issue during launch by pulling the spacecraft away from the rocket during a mission. The jettison motor is activated during ascent to separate the launch abort system from the spacecraft after it is no longer needed during a mission.
“This test showed us that the jettison motor can quickly generate the amount of thrust needed to pull the LAS away during an Orion mission,” said Tim Larson, jettison motor principle engineer for Lockheed Martin who has been with the project since inception. “I’m very pleased with how the test went.”
The fifth firing
The jettison motor has now undergone five tests, including two test flights. Each test in the series builds upon each other, moving the nation forward on its journey to Mars.
The motor used for the fifth test was rebuilt from a previous test motor.
“We were able to recycle some of the parts from the second ground test and use it for this test,” said NASA LAS project manager Robert Decoursey. “We not only went green, but we also saved money.”
Inside and around the test motor were instruments that included strain gauges, accelerometers and pressure transducers, which feed engineers high-quality data that show whether the motor design is ready for upcoming flight tests and missions. This motor had more instruments and produced more data than any of the previous tests.
“There are many intricate details in the jettison motor design that are not obvious from the outside, and the consistent orchestration of those details are most important to obtain predictable performance,” said NASA LAS deputy project manager Deborah Crane. “Aerojet Rocketdyne has done an excellent job executing this test on schedule.”
The jettison motor bakery
Creating a jettison motor is like baking two big cakes and making enough batter for some leftover cupcakes, according to Tim Warner, NASA LAS business manager.
The jettison motor being tested in the photo above would be activated during ascent to separate the launch abort system from the spacecraft after it is no longer needed during a mission.Credits: Aerojet Rocketdyne
What’s most exciting for the team, besides the successful test, are the latest upgrades to their baking and mixing tools.
“We were using two mixing batches to make just one motor, but have recently upgraded to a larger mixing bowl, saving us time and money,” Decoursey said.
The new mixing bowl can hold up to 450 whopping gallons of cake batter, or in NASA terms, motor propellant.
The team mixes up the batter in this large mixing bowl and evenly splits the batter into two pots for a perfectly sculpted jettison motor.
Any leftover propellant is used to make small test motors. The smaller motors are used to check the propellant’s combustion capabilities before the motors are accepted for test or flight.
What’s next?
NASA and its partners are expected to perform the last flight test of the launch abort system in 2019 before they begin sending crew to deep space aboard Orion. During the final test, an uncrewed Orion capsule will launch from a modified Peacekeeper missile and demonstrate a successful abort under the highest aerodynamic loads it could experience during a mission.
The jettison motor will be used during Orion’s first integrated mission with SLS, known as Exploration Mission-1 (EM-1) in late 2018. The mission will be the second test flight for Orion, and the first for SLS. EM-1 will send Orion on a three-week journey approximately 40,000 miles beyond the moon. The test will demonstrate the integrated performance of the rocket and spacecraft before their second test flight together, Exploration Mission-2, which will carry crew.
The LAS is led out NASA’s Langley Research Center in Virginia in collaboration with NASA’s Marshall Space Flight Center in Alabama.
Sasha Ellis
NASA Langley Research Center
This video is a compilation of ultra-high definition time-lapses of the aurora shot from the space station. Auroras are a space weather phenomenon that occur when electrically-charged electrons and protons collide with neutral atoms in the upper atmosphere. The dancing lights of the aurora provide a spectacular show for those on the ground, but also capture the imaginations of scientists who study the aurora and the complex processes that create them.
Just me meeting my hero Katherine Johnson after interviewing her in the newsroom for another article I’m writing. nbd ((VERY BIG DEAL)) •🚀•🚀• Katherine G. Johnson is a pioneer in American space history. A NASA mathematician, Johnson’s computations have influenced every major space program from Mercury through the Shuttle. She even calculated the flight path for the first American mission space. In 1953, Johnson was contracted as a research mathematician at the Langley Research Center with the National Advisory Committee for Aeronautics (NACA), the agency that preceded NASA. She worked in a pool of women performing math calculations until she was temporarily assigned to help the all-male flight research team, and wound up staying there. Johnson’s specialty was calculating the trajectories for space shots which determined the timing for launches, including the Mercury mission and Apollo 11, the mission to the moon. (at NASA Langley Research Center)
For only the second time in a year, a NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a view of the moon as it moved in front of the sunlit side of Earth.
The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four-megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).
The first image is from July 2016 and the second image (moon traveling diagonally Northeast in the image) is from July 2015
Credits: NASA
Jacob Earley, left, Frank Jones and his mother, Maria Jones, learned about the effects of gravity on other planets from NASA intern Jessica Hathaway during Homeschool Appreciation Day, which took place May 6 at the Virginia Air & Space Center (VASC) in Hampton, Virginia. Hathaway was one of several volunteers from NASA's Langley Research Center in Hampton who taught homeschooled children and their parents interactive lessons about everything from ultraviolet radiation to engineering satellites to navigating a rover on Mars. Approximately 300 people registered for the event, which has a focus on activities involving science, technology, engineering and math (STEM). The VASC is the official visitor center for NASA Langley.
Joe Atkinson NASA Langley Research Center
NASA’s aeronautical innovators are ready to take things supersonic, but with a quiet twist.
For the first time in decades, NASA aeronautics is moving forward with the construction of a piloted X-plane, designed from scratch to fly faster than sound with the latest in quiet supersonic technologies.
The new X-plane’s mission: provide crucial data that could enable commercial supersonic passenger air travel over land.
To that end, NASA on April 2 awarded a $247.5 million contract to Lockheed Martin Aeronautics Company of Palmdale, Calif., to build the X-plane and deliver it to the agency’s Armstrong Flight Research Center in California by the end of 2021.
“It is super exciting to be back designing and flying X-planes at this scale,” said Jaiwon Shin, NASA’s associate administrator for aeronautics. “Our long tradition of solving the technical barriers of supersonic flight to benefit everyone continues.”
The key to success for this mission – known as the Low-Boom Flight Demonstrator – will be to demonstrate the ability to fly supersonic, yet generate sonic booms so quiet, people on the ground will hardly notice them, if they hear them at all.
Current regulations, which are based on aircraft speed, ban supersonic flight over land. With the low-boom flights, NASA intends to gather data on how effective the quiet supersonic technology is in terms of public acceptance by flying over a handful of U.S. cities, which have yet to be selected.
The complete set of community response data is targeted for delivery in 2025 to the Federal Aviation Administration (FAA) and the International Civil Aviation Organization (ICAO) from which they can develop and adopt new rules based on perceived sound levels to allow commercial supersonic flight over land.
Years of sonic boom research, beginning with the X-1 first breaking the sound barrier in 1947 – when NASA was the National Advisory Committee for Aeronautics – paved the way for the Low-Boom Flight Demonstration X-plane’s nearly silent treatment of supersonic flight.
The answer to how the X-plane's design makes a quiet sonic boom is in the way its uniquely-shaped hull generates supersonic shockwaves. Shockwaves from a conventional aircraft design coalesce as they expand away from the airplane’s nose and tail, resulting in two distinct and thunderous sonic booms.
But the design’s shape sends those shockwaves away from the aircraft in a way that prevents them from coming together in two loud booms. Instead, the much weaker shockwaves reach the ground still separated, which will be heard as a quick series of soft thumps – again, if anyone standing outside notices them at all.
It’s an idea first theorized during the 1960s and tested by NASA and others during the years since, including flying from 2003-2004 an F-5E Tiger fighter jetmodified with a uniquely-shaped nose, which proved the boom-reducing theory was sound.
NASA’s confidence in the Low-Boom Flight Demonstration design is buoyed by its more recent research using results from the latest in wind-tunnel testing, and advanced computer simulation tools, and actual flight testing.
Recent studies have investigated methods to improve the aerodynamic efficiency of supersonic aircraft wings, and sought to better understand sonic boom propagation through the atmosphere.
Even a 150-year-old photographic technique has helped unlock the modern mysteries of supersonic shockwave behavior during the past few years.
“We’ve reached this important milestone only because of the work NASA has led with its many partners from other government agencies, the aerospace industry and forward-thinking academic institutions everywhere,” said Peter Coen, NASA’s Commercial Supersonic Technology project manager.
So now it’s time to cut metal and begin construction.
The X-plane’s configuration will be based on a preliminary design developed by Lockheed Martin under a contract awarded in 2016. The proposed aircraft will be 94 feet long with a wingspan of 29.5 feet and have a fully-fueled takeoff weight of 32,300 pounds.
The design research speed of the X-plane at a cruising altitude of 55,000 feet is Mach 1.42, or 940 mph. Its top speed will be Mach 1.5, or 990 mph. The jet will be propelled by a single General Electric F414 engine, the powerplant used by F/A-18E/F fighters.
A single pilot will be in the cockpit, which will be based on the design of the rear cockpit seat of the T-38 training jet famously used for years by NASA’s astronauts to stay proficient in high-performance aircraft.
Jim Less is one of the two primary NASA pilots at Armstrong who will fly the X-plane after Lockheed Martin’s pilots have completed initial test flights to make sure the design is safe to fly.
“A supersonic manned X-plane!” Less said, already eager to get his hands on the controls. “This is probably going to be a once-in-a-lifetime opportunity for me. We’re all pretty excited.”
Less is the deputy chief pilot for Low-Boom Flight Demonstration. He and his boss, chief pilot Nils Larson, have already provided some input into things like cockpit design and the development of the simulators they will use for flight training while the aircraft is under construction.
“It’s pretty rare in a test pilot’s career that he can be involved in everything from the design phase to the flight phase, and really the whole life of the program,” Less said.
The program is divided into three phases and the tentative schedule looks like this:
2019 – NASA conducts a critical design review of the low-boom X-plane configuration, which, if successful, allows final construction and assembly to be completed.
2021 – Construction of the aircraft at Lockheed Martin’s Skunk Works facility in Palmdale is completed, to be followed by a series of test flights to demonstrate the aircraft is safe to fly and meets all of NASA’s performance requirements. The aircraft is then officially delivered to NASA, completing Phase One.
2022 – Phase Two will see NASA fly the X-plane in the supersonic test range over Edwards to prove the quiet supersonic technology works as designed, its performance is robust, and it is safe for operations in the National Airspace System.
2023 to 2025 – Phase Three begins with the first community response test flights, which will be staged from Armstrong. Further community response activity will take place in four to six cities around the U.S.
All of NASA’s aeronautics research centers play a part in the Low-Boom Flight Demonstration mission, which includes construction of the demonstrator and the community overflight campaign. For the low-boom flight demonstrator itself, these are their roles:
Ames Research Center, California — configuration assessment and systems engineering.
Armstrong Flight Research Center, California — airworthiness, systems engineering, safety and mission assurance, flight/ground operations, flight systems, project management, and community response testing.
Glenn Research Center, Cleveland — configuration assessment and propulsion performance.
Langley Research Center, Virginia — systems engineering, configuration assessment and research data, flight systems, project management, and community response testing.
“There are so many people at NASA who have put in their very best efforts to get us to this point,” said Shin. “Thanks to their work so far and the work to come, we will be able to use this X-plane to generate the scientifically collected community response data critical to changing the current rules to transforming aviation!”
Jim Banke Aeronautics Research Mission Directorate
A new map of Mars' gravity made with three NASA spacecraft is the most detailed to date, providing a revealing glimpse into the hidden interior of the Red Planet.
"Gravity maps allow us to see inside a planet, just as a doctor uses an X-ray to see inside a patient," said Antonio Genova of the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts. "The new gravity map will be helpful for future Mars exploration, because better knowledge of the planet's gravity anomalies helps mission controllers insert spacecraft more precisely into orbit about Mars. Furthermore, the improved resolution of our gravity map will help us understand the still-mysterious formation of specific regions of the planet." Genova, who is affiliated with MIT but is located at NASA's Goddard Space Flight Center in Greenbelt, Maryland, is the lead author of a paper on this research published online March 5 in the journal Icarus.
The improved resolution of the new gravity map suggests a new explanation for how some features formed across the boundary that divides the relatively smooth northern lowlands from heavily cratered southern highlands. Also, the team confirmed that Mars has a liquid outer core of molten rock by analyzing tides in the Martian crust and mantle caused by the gravitational pull of the sun and the two moons of Mars. Finally, by observing how Mars' gravity changed over 11 years – the period of an entire cycle of solar activity -- the team inferred the massive amount of carbon dioxide that freezes out of the atmosphere onto a Martian polar ice cap when it experiences winter. They also observed how that mass moves between the south pole and the north pole with the change of season in each hemisphere.
The map was derived using Doppler and range tracking data collected by NASA's Deep Space Network from three NASA spacecraft in orbit around Mars: Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). Like all planets, Mars is lumpy, which causes the gravitational pull felt by spacecraft in orbit around it to change. For example, the pull will be a bit stronger over a mountain, and slightly weaker over a canyon.
Slight differences in Mars' gravity changed the trajectory of the NASA spacecraft orbiting the planet, which altered the signal being sent from the spacecraft to the Deep Space Network. These small fluctuations in the orbital data were used to build a map of the Martian gravity field.
The gravity field was recovered using about 16 years of data that were continuously collected in orbit around Mars. However, orbital changes from uneven gravity are tiny, and other forces that can perturb the motion of the spacecraft had to be carefully accounted for, such as the force of sunlight on the spacecraft's solar panels and drag from the Red Planet's thin upper atmosphere. It took two years of analysis and computer modeling to remove the motion not caused by gravity.
"With this new map, we've been able to see gravity anomalies as small as about 100 kilometers (about 62 miles) across, and we've determined the crustal thickness of Mars with a resolution of around 120 kilometers (almost 75 miles)," said Genova. "The better resolution of the new map helps interpret how the crust of the planet changed over Mars' history in many regions."
For example, an area of lower gravity between Acidalia Planitia and Tempe Terra was interpreted before as a system of buried channels that delivered water and sediments from Mars' southern highlands into the northern lowlands billions of years ago when the Martian climate was wetter than it is today. The new map reveals that this low gravity anomaly is definitely larger and follows the boundary between the highlands and the lowlands. This system of gravity troughs is unlikely to be only due to buried channels because in places the region is elevated above the surrounding plains. The new gravity map shows that some of these features run perpendicular to the local topography slope, against what would have been the natural downhill flow of water.
An alternative explanation is that this anomaly may be a consequence of a flexure or bending of the lithosphere -- the strong, outermost layer of the planet -- due to the formation of the Tharsis region. Tharsis is a volcanic plateau on Mars thousands of miles across with the largest volcanoes in the solar system. As the Tharsis volcanoes grew, the surrounding lithosphere buckled under their immense weight.
The new gravity field also allowed the team to confirm indications from previous gravity solutions that Mars has a liquid outer core of molten rock. The new gravity solution improved the measurement of the Martian tides, which will be used by geophysicists to improve the model of Mars' interior.
Changes in Martian gravity over time have been previously measured using the MGS and ODY missions to monitor the polar ice caps. For the first time, the team used MRO data to continue monitoring their mass. The team has determined that when one hemisphere experiences winter, approximately 3 trillion to 4 trillion tons of carbon dioxide freezes out of the atmosphere onto the northern and southern polar caps, respectively. This is about 12 to 16 percent of the mass of the entire Martian atmosphere. NASA's Viking missions first observed this massive seasonal precipitation of carbon dioxide. The new observation confirms numerical predictions from the Mars Global Reference Atmospheric Model – 2010.
The research was funded by grants from NASA's Mars Reconnaissance Orbiter mission and NASA's Mars Data Analysis Program.
Bill Steigerwald
By the end of the year, over 70 different models had been tested by facilities at the Air Force's Arnold Engineering Development Center and the NASA Langley, Ames, and Lewis Research Centers.
Here at NASA Langley Research Center, a lot of those tests took place in our 7 X 10-Foot High Speed Tunnel (pictured above).
Some tests also took place in our 20-Foot Vertical Spin Tunnel.
The California Current System
This February 8, 2016 composite image reveals the complex distribution of phytoplankton in one of Earth’s eastern boundary upwelling systems — the California Current. Recent work suggests that our warming climate my be increasing the intensity of upwelling in such regions with possible repercussions for the species that comprise those ecosystems.
NASA’s OceanColor Web is supported by the Ocean Biology Processing Group (OBPG) at NASA’s Goddard Space Flight Center. Our responsibilities include the collection, processing, calibration, validation, archive and distribution of ocean-related products from a large number of operational, satellite-based remote-sensing missions providing ocean color, sea surface temperature and sea surface salinity data to the international research community since 1996.
Credit: NASA/Goddard/Suomin-NPP/VIIRS #California #nasagoddard #earth #ocean