PINning down future problems
Study finds hackers could use brainwaves to steal passwords
Researchers at the University of Alabama at Birmingham suggest that brainwave-sensing headsets, also known as EEG or electroencephalograph headsets, need better security after a study reveals hackers could guess a user’s passwords by monitoring their brainwaves.
EEG headsets are advertised as allowing users to use only their brains to control robotic toys and video games specifically developed to be played with an EEG headset. There are only a handful on the market, and they range in price from $150 to $800.
Nitesh Saxena, Ph.D., associate professor in the UAB College of Arts and Sciences Department of Computer and Information Sciences, and Ph.D. student Ajaya Neupane and former master’s student Md Lutfor Rahman, found that a person who paused a video game and logged into a bank account while wearing an EEG headset was at risk for having their passwords or other sensitive data stolen by a malicious software program.
“These emerging devices open immense opportunities for everyday users,” Saxena said. “However, they could also raise significant security and privacy threats as companies work to develop even more advanced brain-computer interface technology.”
Saxena and his team used one EEG headset currently available to consumers online and one clinical-grade headset used for scientific research to demonstrate how easily a malicious software program could passively eavesdrop on a user’s brainwaves. While typing, a user’s inputs correspond with their visual processing, as well as hand, eye and head muscle movements. All these movements are captured by EEG headsets. The team asked 12 people to type a series of randomly generated PINs and passwords into a text box as if they were logging into an online account while wearing an EEG headset, in order for the software to train itself on the user’s typing and the corresponding brainwave.
“In a real-world attack, a hacker could facilitate the training step required for the malicious program to be most accurate, by requesting that the user enter a predefined set of numbers in order to restart the game after pausing it to take a break, similar to the way CAPTCHA is used to verify users when logging onto websites,” Saxena said.
The team found that, after a user entered 200 characters, algorithms within the malicious software program could make educated guesses about new characters the user entered by monitoring the EEG data recorded. The algorithm was able to shorten the odds of a hacker’s guessing a four-digit numerical PIN from one in 10,000 to one in 20 and increased the chance of guessing a six-letter password from about 500,000 to roughly one in 500.
EEG has been used in the medical field for more than half a century as a noninvasive method for recording electrical activity in the brain. Electrodes are placed on the surface of the scalp to detect brain waves. An EEG machine then amplifies the signals and records them in a wave pattern on graph paper or a computer. EEG can be combined with a brain-computer interface to allow a person to control external devices. This technology was once highly expensive and used mostly for scientific research, like the production of neuroprosthetic applications to help disabled patients control prosthetic limbs by thinking about the movements. However, it is now being marketed to consumers in the form of a wireless headset and is becoming popular in the gaming and entertainment industries.
“Given the growing popularity of EEG headsets and the variety of ways in which they could be used, it is inevitable that they will become part of our daily lives, including while using other devices,” Saxena said. “It is important to analyze the potential security and privacy risks associated with this emerging technology to raise users’ awareness of the risks and develop viable solutions to malicious attacks.”
One potential solution proposed by Saxena and his team is the insertion of noise anytime a user types a password or PIN while wearing an EEG headset.
It seems nuCLEARer now
“It might surprise you to learn that hydrogen-fusing-into-helium makes up less than half of all nuclear reactions in our Sun, and that it’s also responsible for less than half of the energy that the Sun eventually outputs. There are strange, unearthly phenomena along the way: the diproton that usually just decays back to the original protons that made it, positrons spontaneously emitted from unstable nuclei, and in a small (but important) percentage of these reactions, a rare mass-8 nucleus, something you’ll never find naturally occurring here on Earth. But that’s the nuclear physics of where the Sun gets its energy from, and it’s so much richer than the simple fusion of hydrogen into helium!”
Ask anyone where the Sun (or any star) gets its energy from, and most people will correctly answer “nuclear fusion.” But if you ask what’s getting fused, most people – including most scientists – will tell you that the Sun fuses hydrogen into helium, and that’s what powers it. It’s true that the Sun uses hydrogen as its initial fuel, and that helium-4 is indeed the end product, but the individual reactions that take place to turn hydrogen into helium are surprisingly diverse and intricate. There are actually four major reactions that take place in the sun: fusing two protons into deuterium, fusing deuterium and a proton into helium-3, fusing two helium-3 nuclei into helium-4, and fusing helium-3 and helium-4 in a chain reaction to produce two helium-4 nuclei. Note that only one of those reactions actually turns hydrogen into helium, and that’s not what makes up either the majority of reactions or the majority of the Sun’s energy!
The Sun fuses hydrogen into helium, but that’s not the only thing that powers it. Come find out how the Sun really works today!
Supergiant stars are beasts! Their life is a fight between gravity pushing in and heat pushing out. They fuse heavier and heavier elements in their core until they get to iron. They can’t fuse any more. Iron absorbs more energy than it returns, so gravity takes over. The star’s core collapses and the star dies in an explosive supernova that outshines its entire galaxy.
The heat of a supernova fuses new elements during the explosion, which are then spread out into space via the nebula remnant. Nebulae are the birthplaces of new stars and solar systems.
The iron in your blood came from one of the most powerful explosions in the universe.
Panorama of Jupiter
Jupiter seen by NASA’s Voyager spacecraft
Animation taken from video: Jeff Quitney
Food for thought
We might won`t need a last supper yet
Researchers in Japan have found a way to create innovative materials by blending metals with precision control. Their approach, based on a concept called atom hybridization, opens up an unexplored area of chemistry that could lead to the development of advanced functional materials.
Multimetallic clusters—typically composed of three or more metals—are garnering attention as they exhibit properties that cannot be attained by single-metal materials. If a variety of metal elements are freely blended, it is expected that as-yet-unknown substances are discovered and highly-functional materials are developed. So far, no one had reported the multimetallic clusters blended with more than four metal elements so far because of unfavorable separation of different metals. One idea to overcome this difficulty is miniaturization of cluster sizes to one-nanometer scale, which forces the different metals to be blended in a small space. However, there was no way to realize this idea.
Read more.
‘Junk’ DNA Plays Crucial Role in Holding Genome Together: Study
Jagannathan et al propose that chromocenter and satellite DNA serves a fundamental role in encapsulating the full complement…more Image credit: Lisichik.
How is it that fertilized chicken eggs manage to resist fracture from the outside, while at the same time, are weak enough to break from the inside during chick hatching? It’s all in the eggshell’s nanostructure, according to a new study led by McGill University scientists.
The findings, reported today in Science Advances, could have important implications for food safety in the agro-industry.
Birds have benefited from millions of years of evolution to make the perfect eggshell, a thin, protective biomineralized chamber for embryonic growth that contains all the nutrients required for the growth of a baby chick. The shell, being not too strong, but also not too weak (being “just right” Goldilocks might say), is resistant to fracture until it’s time for hatching.
But what exactly gives bird eggshells these unique features?
To find out, Marc McKee’s research team in McGill’s Faculty of Dentistry, together with Richard Chromik’s group in Engineering and other colleagues, used new sample-preparation techniques to expose the interior of the eggshells to study their molecular nanostructure and mechanical properties.
Read more.
Houston TX (SPX) Feb 28, 2018 Three members of the Expedition 54 crew aboard the International Space Station (ISS), including NASA astronauts Mark Vande Hei and Joe Acaba, returned to Earth on Tuesday after months of performing research and spacewalks in low-Earth orbit. Vande Hei, Acaba and cosmonaut Alexander Misurkin of the Russian space agency Roscosmos landed at 9:31 p.m. EST (8:31 a.m. Feb. 28 in Kazakhstan) sout Full article