Hunt For Huntington!

Hunt for Huntington!

Possible Biomarker For Huntington’s Identified

Possible Biomarker for Huntington’s Identified

A new discovery of a potential biomarker for Huntington’s disease (HD) could mean a more effective way of evaluating the effectiveness of treatments for this neurological disease. The findings may provide insight into treatments that could postpone the death of neurons in people who carry the HD gene mutation, but who do not yet show symptoms of the disease.

More Posts from Redplanet44 and Others

7 years ago
(via MIT Researchers Turn Water Into ‘calm’ Computer Interfaces)
(via MIT Researchers Turn Water Into ‘calm’ Computer Interfaces)
(via MIT Researchers Turn Water Into ‘calm’ Computer Interfaces)
(via MIT Researchers Turn Water Into ‘calm’ Computer Interfaces)

(via MIT researchers turn water into ‘calm’ computer interfaces)

…The Tangible Media Group demonstrated a way to precisely transport droplets of liquid across a surface back in January, which it called “programmable droplets.” The system is essentially just a printed circuit board, coated with a low-friction material, with a grid of copper wiring on top. By programmatically controlling the electric field of the grid, the team is able to change the shape of polarizable liquid droplets and move them around the surface. The precise control is such that droplets can be both merged and split.

Moving on from the underlying technology, the team is now focused on showing how we might leverage the system to create, play and communicate through natural materials…

7 years ago
New Process Allows 3-D Printing Of Nanoscale Metal Structures

New process allows 3-D printing of nanoscale metal structures

Synthesizing organic scaffolds that contain metal ions enables 3-D printing of metallic structures that are orders of magnitude smaller than previously possible

For the first time, it is possible to create complex nanoscale metal structures using 3-D printing, thanks to a new technique developed at Caltech.

The process, once scaled up, could be used in a wide variety of applications, from building tiny medical implants to creating 3-D logic circuits on computer chips to engineering ultralightweight aircraft components. It also opens the door to the creation of a new class of materials with unusual properties that are based on their internal structure. The technique is described in a study that will be published in Nature Communications on February 9.

In 3-D printing – also known as additive manufacturing – an object is built layer by layer, allowing for the creation of structures that would be impossible to manufacture by conventional subtractive methods such as etching or milling. Caltech materials scientist Julia Greer is a pioneer in the creation of ultratiny 3-D architectures built via additive manufacturing. For instance, she and her team have built 3-D lattices whose beams are just nanometers across – far too small to be seen with the naked eye. These materials exhibit unusual, often surprising properties; Greer’s team has created exceptionally lightweight ceramics that spring back to their original shape, spongelike, after being compressed.

Greer’s group 3-D prints structures out of a variety of materials, from ceramics to organic compounds. Metals, however, have been difficult to print, especially when trying to create structures with dimensions smaller than around 50 microns, or about half the width of a human hair.

Read more.

7 years ago
Spikes Of Graphene Can Kill Bacteria On Implants

Spikes of graphene can kill bacteria on implants

A tiny layer of graphene flakes becomes a deadly weapon and kills bacteria, stopping infections during procedures such as implant surgery

A tiny layer of graphene flakes becomes a deadly weapon and kills bacteria, stopping infections during procedures such as implant surgery. This is the findings of new research from Chalmers University of Technology, Sweden, recently published in the scientific journal Advanced Materials Interfaces.

Operations for surgical implants, such as hip and knee replacements or dental implants, have increased in recent years. However, in such procedures, there is always a risk of bacterial infection. In the worst case scenario, this can cause the implant to not attach to the skeleton, meaning it must be removed.

Bacteria travel around in fluids, such as blood, looking for a surface to cling on to. Once in place, they start to grow and propagate, forming a protective layer, known as a biofilm.

A research team at Chalmers has now shown that a layer of vertical graphene flakes forms a protective surface that makes it impossible for bacteria to attach. Instead, bacteria are sliced apart by the sharp graphene flakes and killed. Coating implants with a layer of graphene flakes can therefore help protect the patient against infection, eliminate the need for antibiotic treatment, and reduce the risk of implant rejection. The osseointegration – the process by which the bone structure grow to attach the implant – is not disturbed. In fact, the graphene has been shown to benefit the bone cells.

Read more.

6 years ago

A woman in Nevada dies from a bacterial infection that was resistant to 26 different antibiotics. A U.K. patient contracts a case of multidrug-resistant gonorrhea never seen before. A typhoid superbug kills hundreds in Pakistan. These stories from recent years — and many others — raise fears about the possibility of a post-antibiotic world.

The development of antibiotics in the early 20th century was one of the greatest leaps forward of modern medicine. Suddenly, common illnesses like pneumonia, strep throat and gonorrhea were no longer potential death sentences.

But even in the infancy of antibiotics, it was clear that their misuse and overuse could lead to antibiotic resistance and eventually create untreatable superbugs.

In this video, we explain how antibiotic resistance happens — and what we can do to avoid living in a post-antibiotic world.

Video: NPR

7 years ago

PINning down future problems

Study Finds Hackers Could Use Brainwaves To Steal Passwords

Study finds hackers could use brainwaves to steal passwords

Researchers at the University of Alabama at Birmingham suggest that brainwave-sensing headsets, also known as EEG or electroencephalograph headsets, need better security after a study reveals hackers could guess a user’s passwords by monitoring their brainwaves.

EEG headsets are advertised as allowing users to use only their brains to control robotic toys and video games specifically developed to be played with an EEG headset. There are only a handful on the market, and they range in price from $150 to $800.

Nitesh Saxena, Ph.D., associate professor in the UAB College of Arts and Sciences Department of Computer and Information Sciences, and Ph.D. student Ajaya Neupane and former master’s student Md Lutfor Rahman, found that a person who paused a video game and logged into a bank account while wearing an EEG headset was at risk for having their passwords or other sensitive data stolen by a malicious software program.

“These emerging devices open immense opportunities for everyday users,” Saxena said. “However, they could also raise significant security and privacy threats as companies work to develop even more advanced brain-computer interface technology.”

Saxena and his team used one EEG headset currently available to consumers online and one clinical-grade headset used for scientific research to demonstrate how easily a malicious software program could passively eavesdrop on a user’s brainwaves. While typing, a user’s inputs correspond with their visual processing, as well as hand, eye and head muscle movements. All these movements are captured by EEG headsets. The team asked 12 people to type a series of randomly generated PINs and passwords into a text box as if they were logging into an online account while wearing an EEG headset, in order for the software to train itself on the user’s typing and the corresponding brainwave.

“In a real-world attack, a hacker could facilitate the training step required for the malicious program to be most accurate, by requesting that the user enter a predefined set of numbers in order to restart the game after pausing it to take a break, similar to the way CAPTCHA is used to verify users when logging onto websites,” Saxena said.

The team found that, after a user entered 200 characters, algorithms within the malicious software program could make educated guesses about new characters the user entered by monitoring the EEG data recorded. The algorithm was able to shorten the odds of a hacker’s guessing a four-digit numerical PIN from one in 10,000 to one in 20 and increased the chance of guessing a six-letter password from about 500,000 to roughly one in 500.

EEG has been used in the medical field for more than half a century as a noninvasive method for recording electrical activity in the brain. Electrodes are placed on the surface of the scalp to detect brain waves. An EEG machine then amplifies the signals and records them in a wave pattern on graph paper or a computer. EEG can be combined with a brain-computer interface to allow a person to control external devices. This technology was once highly expensive and used mostly for scientific research, like the production of neuroprosthetic applications to help disabled patients control prosthetic limbs by thinking about the movements. However, it is now being marketed to consumers in the form of a wireless headset and is becoming popular in the gaming and entertainment industries.

“Given the growing popularity of EEG headsets and the variety of ways in which they could be used, it is inevitable that they will become part of our daily lives, including while using other devices,” Saxena said. “It is important to analyze the potential security and privacy risks associated with this emerging technology to raise users’ awareness of the risks and develop viable solutions to malicious attacks.”

One potential solution proposed by Saxena and his team is the insertion of noise anytime a user types a password or PIN while wearing an EEG headset.


Tags
7 years ago

Apply independently produced drug to the burnt area

Fed Up With Drug Companies, Hospitals Decide to Start Their Own
"A group of large hospital systems plans to create a nonprofit generic drug company to battle shortages and high prices.

Tags
7 years ago

Imagine the lightsabers from this

Scientists Observe New Exotic Phenomena In Photonic Crystals

Scientists Observe New Exotic Phenomena in Photonic Crystals

Topological effects, such as those found in crystals whose surfaces conduct electricity while their bulk does not, have been an exciting topic of physics research in recent years and were the subject of the 2016 Nobel Prize in physics. Now, a team of researchers at MIT and elsewhere has found novel topological phenomena in a different class of systems — open systems, where energy or material can enter or be emitted, as opposed to closed systems with no such exchange with the outside.

This could open up some new realms of basic physics research, the team says, and might ultimately lead to new kinds of lasers and other technologies.

The results are being reported this week in the journal Science, in a paper by recent MIT graduate Hengyun “Harry” Zhou, MIT visiting scholar Chao Peng (a professor at Peking University), MIT graduate student Yoseob Yoon, recent MIT graduates Bo Zhen and Chia Wei Hsu, MIT Professor Marin Soljačić, the Francis Wright Davis Professor of Physics John Joannopoulos, the Haslam and Dewey Professor of Chemistry Keith Nelson, and the Lawrence C. and Sarah W. Biedenharn Career Development Assistant Professor Liang Fu.

Read more.


Tags
7 years ago

Solar System 10 Things to Know: Planetary Atmospheres

Every time you take a breath of fresh air, it’s easy to forget you can safely do so because of Earth’s atmosphere. Life on Earth could not exist without that protective cover that keeps us warm, allows us to breathe and protects us from harmful radiation—among other things.

What makes Earth’s atmosphere special, and how do other planets’ atmospheres compare? Here are 10 tidbits:

1. On Earth, we live in the troposphere, the closest atmospheric layer to Earth’s surface. “Tropos” means “change,” and the name reflects our constantly changing weather and mixture of gases. 

Solar System 10 Things To Know: Planetary Atmospheres

It’s 5 to 9 miles (8 to 14 kilometers) thick, depending on where you are on Earth, and it’s the densest layer of atmosphere. When we breathe, we’re taking in an air mixture of about 78 percent nitrogen, 21 percent oxygen and 1 percent argon, water vapor and carbon dioxide. More on Earth’s atmosphere›

Solar System 10 Things To Know: Planetary Atmospheres

2. Mars has a very thin atmosphere, nearly all carbon dioxide. Because of the Red Planet’s low atmospheric pressure, and with little methane or water vapor to reinforce the weak greenhouse effect (warming that results when the atmosphere traps heat radiating from the planet toward space), Mars’ surface remains quite cold, the average surface temperature being about -82 degrees Fahrenheit (minus 63 degrees Celsius). More on the greenhouse effect›

Solar System 10 Things To Know: Planetary Atmospheres

3. Venus’ atmosphere, like Mars’, is nearly all carbon dioxide. However, Venus has about 154,000 times more carbon dioxide in its atmosphere than Earth (and about 19,000 times more than Mars does), producing a runaway greenhouse effect and a surface temperature hot enough to melt lead. A runaway greenhouse effect is when a planet’s atmosphere and surface temperature keep increasing until the surface gets so hot that its oceans boil away. More on the greenhouse effect›

Solar System 10 Things To Know: Planetary Atmospheres

4. Jupiter likely has three distinct cloud layers (composed of ammonia, ammonium hydrosulfide and water) in its “skies” that, taken together, span an altitude range of about 44 miles (71 kilometers). The planet’s fast rotation—spinning once every 10 hours—creates strong jet streams, separating its clouds into dark belts and bright zones wrapping around the circumference of the planet. More on Jupiter›

Solar System 10 Things To Know: Planetary Atmospheres

5. Saturn’s atmosphere—where our Cassini spacecraft ended its 13 extraordinary years of exploration of the planet—has a few unusual features. Its winds are among the fastest in the solar system, reaching speeds of 1,118 miles (1,800 kilometers) per hour. Saturn may be the only planet in our solar system with a warm polar vortex (a mass of swirling atmospheric gas around the pole) at both the North and South poles. Also, the vortices have “eye-wall clouds,” making them hurricane-like systems like those on Earth.

Another uniquely striking feature is a hexagon-shaped jet streamencircling the North Pole. In addition, about every 20 to 30 Earth years, Saturn hosts a megastorm (a great storm that can last many months). More on Saturn›

Solar System 10 Things To Know: Planetary Atmospheres

6. Uranus gets its signature blue-green color from the cold methane gas in its atmosphere and a lack of high clouds. The planet’s minimum troposphere temperature is 49 Kelvin (minus 224.2 degrees Celsius), making it even colder than Neptune in some places. Its winds move backward at the equator, blowing against the planet’s rotation. Closer to the poles, winds shift forward and flow with the planet’s rotation. More on Uranus›

Solar System 10 Things To Know: Planetary Atmospheres

7. Neptune is the windiest planet in our solar system. Despite its great distance and low energy input from the Sun, wind speeds at Neptune surpass 1,200 miles per hour (2,000 kilometers per hour), making them three times stronger than Jupiter’s and nine times stronger than Earth’s. Even Earth’s most powerful winds hit only about 250 miles per hour (400 kilometers per hour). Also, Neptune’s atmosphere is blue for the very same reasons as Uranus’ atmosphere. More on Neptune›

Solar System 10 Things To Know: Planetary Atmospheres

8. WASP-39b, a hot, bloated, Saturn-like exoplanet (planet outside of our solar system) some 700 light-years away, apparently has a lot of water in its atmosphere. In fact, scientists estimate that it has about three times as much water as Saturn does. More on this exoplanet›

Solar System 10 Things To Know: Planetary Atmospheres

9. A weather forecast on “hot Jupiters”—blistering, Jupiter-like exoplanets that orbit very close to their stars—might mention cloudy nights and sunny days, with highs of 2,400 degrees Fahrenheit (about 1,300 degrees Celsius, or 1,600 Kelvin). Their cloud composition depends on their temperature, and studies suggest that the clouds are unevenly distributed. More on these exoplanets›

Solar System 10 Things To Know: Planetary Atmospheres

10. 55 Cancri e, a “super Earth” exoplanet (a planet outside of our solar system with a diameter between Earth’s and Neptune’s) that may be covered in lava, likely has an atmosphere containing nitrogen, water and even oxygen–molecules found in our atmosphere–but with much higher temperatures throughout. Orbiting so close to its host star, the planet could not maintain liquid water and likely would not be able to support life. More on this exoplanet›

Read the full version of this week’s Solar System 10 Things to Know HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

7 years ago

Biomimicry

Brittle Starfish Shows How To Make Tough Ceramics

Brittle starfish shows how to make tough ceramics

Nature inspires innovation. An international team lead by researchers at Technion – Israel Institute of Technology, together with ESRF -the European Synchrotron, Grenoble, France- scientists, have discovered how a brittle star can create material like tempered glass underwater. The findings are published in Science and may open new bio-inspired routes for toughening brittle ceramics in various applications that span from optical lenses to automotive turbochargers and even biomaterial implants.

A beautiful, brainless brittle star that lives in coral reefs has the clue to super tough glass. Hundreds of focal lenses are located on the arms of this creature, which is an echinoderm called Ophiocoma wendtii. These lenses, made of chalk, are powerful and accurate, and the deciphering of their crystalline and nanoscale structure has occupied Boaz Pokroy and his team, from the Technion-Israel Institute of Technology, for the past three years. Thanks to research done on three ESRF beamlines, ID22, ID13 and ID16B, among other laboratories, they have figured out the unique protective mechanism of highly resistant lenses.

As an example, take tempered glass. It is produced by exerting compressive pressure on the glass which compresses it and leaves it more compact than in its natural state. Glass tempering is performed by rapidly heating and then rapidly cooling the material. In this process, the outside of the material cools more quickly than the inside and thereby compresses the inside. Ophiocoma wendtiilenses are created in the open sea, at room temperature, unlike tempered glass. “We have discovered a strategy for making brittle material much more durable under natural conditions. It is ‘crystal engineering’ and tempering without heating and quenching – a process that could be very useful in materials engineering,” explains Pokroy.

Read more.


Tags
6 years ago
Origami, 3D Printing Merge To Make Complex Structures In One Shot

Origami, 3D printing merge to make complex structures in one shot

By merging the ancient art of origami with 21st century technology, researchers have created a one-step approach to fabricating complex origami structures whose light weight, expandability, and strength could have applications in everything from biomedical devices to equipment used in space exploration. Until now, making such structures has involved multiple steps, more than one material, and assembly from smaller parts.

“What we have here is the proof of concept of an integrated system for manufacturing complex origami. It has tremendous potential applications,” said Glaucio H. Paulino, a professor at the School of Civil and Environmental Engineering at the Georgia Institute of Technology and a leader in the growing field of origami engineering, or using the principles of origami, mathematics and geometry to make useful things. Last fall Georgia Tech became the first university in the country to offer a course on origami engineering, which Paulino taught.

Read more.

  • bayercom
    bayercom liked this · 7 years ago
  • studying-frenzy
    studying-frenzy reblogged this · 7 years ago
  • mmusti06-blog
    mmusti06-blog liked this · 7 years ago
  • tiggertx
    tiggertx reblogged this · 7 years ago
  • earthxfire
    earthxfire liked this · 7 years ago
  • themoonghosts
    themoonghosts reblogged this · 7 years ago
  • hijedelmaiz
    hijedelmaiz liked this · 7 years ago
  • redplanet44
    redplanet44 reblogged this · 7 years ago
  • redplanet44
    redplanet44 liked this · 7 years ago
  • silentgong
    silentgong liked this · 7 years ago
  • raze974
    raze974 liked this · 7 years ago
  • sciencenerd4-blog
    sciencenerd4-blog liked this · 7 years ago
  • neysastudies
    neysastudies reblogged this · 7 years ago
  • neysastudies
    neysastudies liked this · 7 years ago
  • qxrhg
    qxrhg liked this · 7 years ago
  • nurnielfa
    nurnielfa liked this · 7 years ago
  • tojiswhore-aventurinesslut
    tojiswhore-aventurinesslut reblogged this · 7 years ago
  • tonybladesworld-blog
    tonybladesworld-blog liked this · 7 years ago
  • studying-frenzy
    studying-frenzy liked this · 7 years ago
  • hannah-arts
    hannah-arts liked this · 7 years ago
  • chai-enthusiast
    chai-enthusiast liked this · 7 years ago
  • zahrasthings-blog1
    zahrasthings-blog1 liked this · 7 years ago
  • khaled-elaish
    khaled-elaish reblogged this · 7 years ago
  • thatrenaissanceguy
    thatrenaissanceguy liked this · 7 years ago
  • valeriaroldang
    valeriaroldang reblogged this · 7 years ago
  • valeriaroldang
    valeriaroldang liked this · 7 years ago
  • xen0pus
    xen0pus liked this · 7 years ago
  • themoonghosts
    themoonghosts liked this · 7 years ago
  • erythrian
    erythrian liked this · 7 years ago
  • lordnyeguyofscience
    lordnyeguyofscience liked this · 7 years ago
  • neurosciencenews
    neurosciencenews reblogged this · 7 years ago
redplanet44 - Untitled
Untitled

103 posts

Explore Tumblr Blog
Search Through Tumblr Tags