Make A Wish! How To See The Geminid Meteor Shower

In this long exposure, a meteor streaks across a dusty blue star-spangled sky. Along the horizon, the bright lights of the Baikonur Cosmodrome glow yellow, illuminating buildings and a launch pad. Credit: NASA/Joel Kowsky

A Geminid meteor streaks across the sky as the Soyuz TMA-19M spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome on Sunday, Dec. 13, 2015, in Kazakhstan. Credit: NASA/Joel Kowsky

Make a Wish! How to See the Geminid Meteor Shower

Every December, we have a chance to see one of our favorite meteor showers – the Geminids. To help you prepare, we’ve answered some of your most commonly asked questions. Happy viewing, stargazers!

23 radar images of near-Earth object 3200 Phaethon are shown in four rows against a black background. Text in the lower right corner reads, “3200 Phaethon, 75 m x 0.95 Hz, 17 Dec 2017, Arecibo/NASA/NSF.” Credit: Arecibo Observatory/NASA/NSF

These radar images of near-Earth object 3200 Phaethon were generated by astronomers at the National Science Foundation's Arecibo Observatory on Dec. 17, 2017. Observations of Phaethon were conducted at Arecibo from Dec. 15 through 19, 2017. At time of closest approach on Dec. 16 at 3 p.m. PST (6 p.m. EST, 2300 UTC), the asteroid was about 6.4 million miles (10.3 million kilometers) away, or about 27 times the distance from Earth to the Moon. Credit: Arecibo Observatory/NASA/NSF

What are the Geminids?

The Geminids are caused by debris from a celestial object known as 3200 Phaethon striking Earth’s atmosphere. Phaethon’s origin is the subject of some debate. Some astronomers consider it to be an extinct comet, based on observations showing some small amount of material leaving its surface. Others argue that it has to be an asteroid because of its orbit and its similarity to the main-belt asteroid Pallas.

An illustration of the night sky with the constellations Cancer and Gemini overlaid show the radiants of 388 meteors with speeds of 35 km/s, depicted by small bright yellow dots, observed by the NASA Fireball Network in December 2020. Credit: NASA

All meteors appear to come from the same place in the sky, which is called the radiant. The Geminids appear to radiate from a point in the constellation Gemini, hence the name “Geminids.” The graphic shows the radiants of 388 meteors with speeds of 35 km/s observed by the NASA Fireball Network in December 2020. All the radiants are in Gemini, which means they belong to the Geminid shower. Credit: NASA

Why are they called the Geminids?

All meteors associated with a shower have similar orbits, and they all appear to come from the same place in the sky, which is called the radiant. The Geminids appear to radiate from a point in the constellation Gemini, hence the name “Geminids.”

A Geminid meteor, streaking across the sky as a bright white line, is visible in a black and white image. Credit: NASA

A Geminid streaks across the sky in this photo from December 2019. Credit: NASA

When is the best time to view them?

The Geminid meteor shower is active for much of December, but the peak will occur during the night of Dec. 13 into the morning of Dec. 14, 2023. Meteor rates in rural areas can be upwards of one per minute this year with minimal moonlight to interfere.

What do I need to see them?

As with all meteor showers, all you need is a clear sky, darkness, a bit of patience, and perhaps warm outerwear and blankets for this one. You don’t need to look in any particular direction, as meteors can generally be seen all over the sky. If you want to take photographs, check out these helpful tips.

An infographic displaying the altitude range of the Geminid meteors. Data points are displayed as white and orange dots, with white dots marking “begin height” and orange dots marking “end height.” Text on the infographic notes: “Geminids start burning up 63 miles above your head. They very rarely make it to 25 miles altitude.” A note in the lower right corner says “2019 NASA meteor camera data (283 Geminids).” Credit: NASA

An infographic based on 2019’s meteor camera data for the Geminids. Credit: NASA

Do you have any advice to help me see the Geminids better?

Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible.

A Geminid meteor, streaking across the sky as a short bright white line, is visible within a circular field of view. Credit: NASA

A Geminid streaks across the sky in this photo from December 2011. Credit: NASA

What will the meteors look like?

According to Bill Cooke, lead for the Meteoroid Environment Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, “Most meteors appear to be colorless or white, however the Geminids appear with a greenish hue. They’re pretty meteors!” Depending on the meteor’s chemical composition, the meteor will emit different colors when burned in the Earth’s atmosphere. Oxygen, magnesium, and nickel usually produce green.

Make sure to follow us on Tumblr for your regular dose of space!

More Posts from Nasa and Others

5 years ago
Say Hello To Spiral Galaxy NGC 1097 👋

Say hello to spiral galaxy NGC 1097 👋

About 45 million light-years away, in another corner of the cosmos, lies spiral galaxy NGC 1097. Though this Hubble Space Telescope image zooms in toward the core, the galaxy’s vast spiral arms span over 100,000 light-years as they silently sweep through space. At the heart of this galaxy lurks a black hole that is about 100 million times as massive as the Sun.

The supermassive black hole is voraciously eating up surrounding matter, which forms a doughnut-shaped ring around it. Matter that's pulled into the black hole releases powerful radiation, making the star-filled center of the galaxy even brighter. Hubble’s observations have led to the discovery that while the material that is drawn toward NGC 1097’s black hole may be doomed to die, new stars are bursting into life in the ring around it.

This sparkling spiral galaxy is especially interesting to both professional scientists and amateur astronomers. It is a popular target for supernova hunters ever since the galaxy experienced three supernovas in relatively rapid succession — just over a decade, between 1992 and 2003. Scientists are intrigued by the galaxy’s satellites — smaller “dwarf” galaxies that orbit NGC 1097 like moons. Studying this set of galaxies could reveal new information about how galaxies interact with each other and co-evolve.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Frozen: Ice on Earth and Well Beyond

image

Icy Hearts: A heart-shaped calving front of a glacier in Greenland (left) and Pluto's frozen plains (right). Credits: NASA/Maria-Jose Viñas and NASA/APL/SwRI

From deep below the soil at Earth’s polar regions to Pluto’s frozen heart, ice exists all over the solar system...and beyond. From right here on our home planet to moons and planets millions of miles away, we’re exploring ice and watching how it changes. Here’s 10 things to know:

1. Earth’s Changing Ice Sheets

image

An Antarctic ice sheet. Credit: NASA

Ice sheets are massive expanses of ice that stay frozen from year to year and cover more than 6 million square miles. On Earth, ice sheets extend across most of Greenland and Antarctica. These two ice sheets contain more than 99 percent of the planet’s freshwater ice. However, our ice sheets are sensitive to the changing climate.

Data from our GRACE satellites show that the land ice sheets in both Antarctica and Greenland have been losing mass since at least 2002, and the speed at which they’re losing mass is accelerating.

2. Sea Ice at Earth’s Poles

image

Earth’s polar oceans are covered by stretches of ice that freezes and melts with the seasons and moves with the wind and ocean currents. During the autumn and winter, the sea ice grows until it reaches an annual maximum extent, and then melts back to an annual minimum at the end of summer. Sea ice plays a crucial role in regulating climate – it’s much more reflective than the dark ocean water, reflecting up to 70 percent of sunlight back into space; in contrast, the ocean reflects only about 7 percent of the sunlight that reaches it. Sea ice also acts like an insulating blanket on top of the polar oceans, keeping the polar wintertime oceans warm and the atmosphere cool.

Some Arctic sea ice has survived multiple years of summer melt, but our research indicates there’s less and less of this older ice each year. The maximum and minimum extents are shrinking, too. Summertime sea ice in the Arctic Ocean now routinely covers about 30-40 percent less area than it did in the late 1970s, when near-continuous satellite observations began. These changes in sea ice conditions enhance the rate of warming in the Arctic, already in progress as more sunlight is absorbed by the ocean and more heat is put into the atmosphere from the ocean, all of which may ultimately affect global weather patterns.

3. Snow Cover on Earth

image

Snow extends the cryosphere from the poles and into more temperate regions.

Snow and ice cover most of Earth’s polar regions throughout the year, but the coverage at lower latitudes depends on the season and elevation. High-elevation landscapes such as the Tibetan Plateau and the Andes and Rocky Mountains maintain some snow cover almost year-round. In the Northern Hemisphere, snow cover is more variable and extensive than in the Southern Hemisphere.

Snow cover the most reflective surface on Earth and works like sea ice to help cool our climate. As it melts with the seasons, it provides drinking water to communities around the planet.

4. Permafrost on Earth

image

Tundra polygons on Alaska's North Slope. As permafrost thaws, this area is likely to be a source of atmospheric carbon before 2100. Credit: NASA/JPL-Caltech/Charles Miller

Permafrost is soil that stays frozen solid for at least two years in a row. It occurs in the Arctic, Antarctic and high in the mountains, even in some tropical latitudes. The Arctic’s frozen layer of soil can extend more than 200 feet below the surface. It acts like cold storage for dead organic matter – plants and animals.

In parts of the Arctic, permafrost is thawing, which makes the ground wobbly and unstable and can also release those organic materials from their icy storage. As the permafrost thaws, tiny microbes in the soil wake back up and begin digesting these newly accessible organic materials, releasing carbon dioxide and methane, two greenhouse gases, into the atmosphere.

Two campaigns, CARVE and ABoVE, study Arctic permafrost and its potential effects on the climate as it thaws.

5. Glaciers on the Move

image

Did you know glaciers are constantly moving? The masses of ice act like slow-motion rivers, flowing under their own weight. Glaciers are formed by falling snow that accumulates over time and the slow, steady creep of flowing ice. About 10 percent of land area on Earth is covered with glacial ice, in Greenland, Antarctica and high in mountain ranges; glaciers store much of the world's freshwater.

Our satellites and airplanes have a bird’s eye view of these glaciers and have watched the ice thin and their flows accelerate, dumping more freshwater ice into the ocean, raising sea level.

6. Pluto’s Icy Heart

image

The nitrogen ice glaciers on Pluto appear to carry an intriguing cargo: numerous, isolated hills that may be fragments of water ice from Pluto's surrounding uplands. NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Pluto’s most famous feature – that heart! – is stone cold. First spotted by our New Horizons spacecraft in 2015, the heart’s western lobe, officially named Sputnik Planitia, is a deep basin containing three kinds of ices – frozen nitrogen, methane and carbon monoxide.

Models of Pluto’s temperatures show that, due the dwarf planet’s extreme tilt (119 degrees compared to Earth’s 23 degrees), over the course of its 248-year orbit, the latitudes near 30 degrees north and south are the coldest places – far colder than the poles. Ice would have naturally formed around these latitudes, including at the center of Sputnik Planitia.

New Horizons also saw strange ice formations resembling giant knife blades. This “bladed terrain” contains structures as tall as skyscrapers and made almost entirely of methane ice, likely formed as erosion wore away their surfaces, leaving dramatic crests and sharp divides. Similar structures can be found in high-altitude snowfields along Earth’s equator, though on a very different scale.

7. Polar Ice on Mars

image

This image, combining data from two instruments aboard our Mars Global Surveyor, depicts an orbital view of the north polar region of Mars. Credit: NASA/JPL-Caltech/MSSS

Mars has bright polar caps of ice easily visible from telescopes on Earth. A seasonal cover of carbon dioxide ice and snow advances and retreats over the poles during the Martian year, much like snow cover on Earth.

image

This animation shows a side-by-side comparison of CO2 ice at the north (left) and south (right) Martian poles over the course of a typical year (two Earth years). This simulation isn't based on photos; instead, the data used to create it came from two infrared instruments capable of studying the poles even when they're in complete darkness. This data were collected by our Mars Reconnaissance Orbiter, and Mars Global Surveyor. Credit: NASA/JPL-Caltech

During summertime in the planet's north, the remaining northern polar cap is all water ice; the southern cap is water ice as well, but remains covered by a relatively thin layer of carbon dioxide ice even in summertime.

Scientists using radar data from our Mars Reconnaissance Orbiter found a record of the most recent Martian ice age in the planet's north polar ice cap. Research indicates a glacial period ended there about 400,000 years ago. Understanding seasonal ice behavior on Mars helps scientists refine models of the Red Planet's past and future climate.

8. Ice Feeds a Ring of Saturn

image

Wispy fingers of bright, icy material reach tens of thousands of kilometers outward from Saturn's moon Enceladus into the E ring, while the moon's active south polar jets continue to fire away. Credit: NASA/JPL/Space Science Institute

Saturn’s rings and many of its moons are composed of mostly water ice – and one of its moons is actually creating a ring. Enceladus, an icy Saturnian moon, is covered in “tiger stripes.” These long cracks at Enceladus’ South Pole are venting its liquid ocean into space and creating a cloud of fine ice particles over the moon's South Pole. Those particles, in turn, form Saturn’s E ring, which spans from about 75,000 miles (120,000 kilometers) to about 260,000 miles (420,000 kilometers) above Saturn's equator. Our Cassini spacecraft discovered this venting process and took high-resolution images of the system.

image

Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. Credit: NASA/JPL/Space Science Institute

9. Ice Rafts on Europa

image

View of a small region of the thin, disrupted, ice crust in the Conamara region of Jupiter's moon Europa showing the interplay of surface color with ice structures. Credit: NASA/JPL/University of Arizona

The icy surface of Jupiter’s moon Europa is crisscrossed by long fractures. During its flybys of Europa, our Galileo spacecraft observed icy domes and ridges, as well as disrupted terrain including crustal plates that are thought to have broken apart and "rafted" into new positions. An ocean with an estimated depth of 40 to 100 miles (60 to 150 kilometers) is believed to lie below that 10- to 15-mile-thick (15 to 25 km) shell of ice.

The rafts, strange pits and domes suggest that Europa’s surface ice could be slowly turning over due to heat from below. Our Europa Clipper mission, targeted to launch in 2022, will conduct detailed reconnaissance of Europa to see whether the icy moon could harbor conditions suitable for life.

10. Crater Ice on Our Moon

image

The image shows the distribution of surface ice at the Moon’s south pole (left) and north pole (right), detected by our Moon Mineralogy Mapper instrument. Credit: NASA

In the darkest and coldest parts of our Moon, scientists directly observed definitive evidence of water ice. These ice deposits are patchy and could be ancient. Most of the water ice lies inside the shadows of craters near the poles, where the warmest temperatures never reach above -250 degrees Fahrenheit. Because of the very small tilt of the Moon’s rotation axis, sunlight never reaches these regions.

A team of scientists used data from a our instrument on India’s Chandrayaan-1 spacecraft to identify specific signatures that definitively prove the water ice. The Moon Mineralogy Mapper not only picked up the reflective properties we’d expect from ice, but was able to directly measure the distinctive way its molecules absorb infrared light, so it can differentiate between liquid water or vapor and solid ice.

With enough ice sitting at the surface – within the top few millimeters – water would possibly be accessible as a resource for future expeditions to explore and even stay on the Moon, and potentially easier to access than the water detected beneath the Moon’s surface.

11. Bonus: Icy World Beyond Our Solar System!

image

With an estimated temperature of just 50K, OGLE-2005-BLG-390L b is the chilliest exoplanet yet discovered. Pictured here is an artist's concept. Credit: NASA

OGLE-2005-BLG-390Lb, the icy exoplanet otherwise known as Hoth, orbits a star more than 20,000 light years away and close to the center of our Milky Way galaxy. It’s locked in the deepest of deep freezes, with a surface temperature estimated at minus 364 degrees Fahrenheit (minus 220 Celsius)!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago
Thank You, Tumblr!

Thank you, Tumblr!

That’s it, Tumblr! Losing comm soon. I’m in space, so that happens. Thank you for all your good questions. I enjoyed #AnswerTime with you today! 

Keep following my Year In Space here on Tumblr and on Twitter, Facebook and Instagram! 

2 years ago

Tour the Ocean through the Art of Sound

The ocean is one of the largest ecosystems on our planet. From eye-catching waves to the darkness of the twilight zone, it’s a place filled with mystery and rapid change.

An aerial view of a coastline and ocean are the background to text which reads "Sounds of the Sea".

For a scientist studying ocean color at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, there was one more question–what does it sound like?

Before long, a “symphonic ocean experience” was born, combining satellite imagery, ocean color data and programming expertise. Learn more about how data gets converted to music and sound here:

This World Oceans Day, enjoy a tour of the ocean set to sound. Here we go:

Sounds of the Sea
SoundCloud
For World Oceans Month, enjoy a moment of zen with a symphonic tour of the ocean. Experience the swirls off the coast of Río de la Plata to

Bering Sea

This melody explores the phytoplankton blooms in the western Bering Sea along the coast of the Kamchatka Peninsula collected by Aqua/MODIS on May 15, 2021. The melody created for this image was aimed at capturing the movement of the eddies or the circular movements of water. Data came from the image’s red, green, and blue channels.

Rio de la Plata

This melody explores a spring bloom in the South Atlantic Ocean off the coast of Argentina, Uruguay, and Brazil, lending the water many different shades of green, blue, and brown. The Rio de la Plata estuary in the northwest corner of the above image gets most of its tan coloration from sediments suspended in the water. The melody paired with the data evokes the sediment plumes and swirls happening off the coast.

Coral Sea

Data for the sounds of the Coral Sea were collected over the course of one year from the Aqua/Modis satellite. The information was extracted from a series of 32-day rolling averages for the year 2020, displaying the movement of chlorophyll a data.

Chlorophyll a is a specific form of chlorophyll used in photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light. It is a poor absorber of green and near-green portions of the spectrum, and that’s why it appears green.

Western Australia

Off the coast of western Australia is the appearance of swirls in the ocean. To catch the movement of the Indian Ocean, data was collected from 31 days of imagery examining blue wavelengths of light. The information was gathered from the Suomi-NPP/VIIRS instrument aboard the Joint Polar Satellite System (JPSS) series of spacecraft.

More moments of zen

Looking for more moments of zen? Explore them with NASA’s Soundcloud page, where many are out of this world. Curious on how we get these breathtaking ocean images? Take time to read about Goddard Oceanographer Norman Kuring and how he helped create them.


Tags
7 years ago

Solar System: 10 Things to Know This Week

Every day, our spacecraft and people are exploring the solar system. Both the public and the private sectors are contributing to the quest. For example, here are ten things happening just this week:

1. We deliver. 

image

The commercial space company Orbital ATK is targeting Saturday, Nov. 11 for the launch of its Cygnus spacecraft on an Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Cygnus is launching on a resupply mission to the International Space Station, carrying cargo and scientific experiments to the six people currently living on the microgravity laboratory. 

2. See for yourself. 

image

Social media users are invited to register to attend another launch in person, this one of a SpaceX Falcon 9 rocket carrying the Dragon spacecraft from Cape Canaveral Air Force Station in Florida. This launch, currently targeted for no earlier than December, will be the next commercial cargo resupply mission to the International Space Station. The deadline to apply is Nov. 7. Apply HERE.

3. Who doesn't like to gaze at the Moon?

image

Our Lunar Reconnaissance Orbiter (LRO) sure does—and from very close range. This robotic spacecraft has been orbiting Earth's companion since 2009, returning views of the lunar surface that are so sharp they show the footpaths made by Apollo astronauts. Learn more about LRO and the entire history of lunar exploration at NASA's newly-updated, expanded Moon site: moon.nasa.gov

4. Meanwhile at Mars...

image

Another sharp-eyed robotic spacecraft has just delivered a fresh batch of equally detailed images. Our Mars Reconnaissance Orbiter (MRO) surveys the Red Planet's surface daily, and you can see the very latest pictures of those exotic landscapes HERE. We currently operate five—count 'em, five—active missions at Mars, with another (the InSight lander) launching next year. Track them all at: mars.nasa.gov.

5. Always curious. 

image

One of those missions is the Curiosity rover. It's currently climbing a rocky highland dubbed Vera Rubin Ridge, turning its full array of instruments on the intriguing geology there. Using those instruments, Curiosity can see things you and I can't.

6. A new Dawn. 

image

Our voyage to the asteroid belt has a new lease on life. The Dawn spacecraft recently received a mission extension to continue exploring the dwarf planet Ceres. This is exciting because minerals containing water are widespread on Ceres, suggesting it may have had a global ocean in the past. What became of that ocean? Could Ceres still have liquid today? Ongoing studies from Dawn could shed light on these questions.

7. There are eyes everywhere. 

Solar System: 10 Things To Know This Week

When our Mars Pathfinder touched down in 1997, it had five cameras: two on a mast that popped up from the lander, and three on the rover, Sojourner. Since then, photo sensors that were improved by the space program have shrunk in size, increased in quality and are now carried in every cellphone. That same evolution has returned to space. Our Mars 2020 mission will have more "eyes" than any rover before it: a grand total of 23, to create sweeping panoramas, reveal obstacles, study the atmosphere, and assist science instruments.

8. Voyage to a hidden ocean.

Solar System: 10 Things To Know This Week

One of the most intriguing destinations in the solar system is Jupiter's moon Europa, which hides a global ocean of liquid water beneath its icy shell. Our Europa Clipper mission sets sail in the 2020s to take a closer look than we've ever had before. You can explore Europa, too: europa.nasa.gov

9. Flight of the mockingbird. 

Solar System: 10 Things To Know This Week

On Nov. 10, the main belt asteroid 19482 Harperlee, named for the legendary author of To Kill a Mockingbird, makes its closest approach to Earth during the asteroid's orbit around the Sun. Details HERE. Learn more about asteroids HERE. Meanwhile, our OSIRIS-REx mission is now cruising toward another tiny, rocky world called Bennu.

10. What else is up this month? 

For sky watchers, there will be a pre-dawn pairing of Jupiter and Venus, the Moon will shine near some star clusters, and there will be meteor activity all month long. Catch our monthly video blog for stargazers HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Four Things ECOSTRESS Can See From Space

Our new instrument in space, the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), is designed to study how plants respond to heat and water stress by measuring the temperature of Earth's vegetation, but that’s not all it will do. Adding ECOSTRESS to the Space Station will also add to our understanding of volcanoes, fires, urban heat and coastal and inland waters.

Four Things ECOSTRESS Can See From Space

1. Fires

ECOSTRESS's radiometer can detect all kinds of fires, but it may be most useful in recording small fires – new wildfires that are just beginning to grow. These have proven hard to study from satellite observations. ECOSTRESS has a pixel size of only 130 by 230 feet (40 by 70 meters), offering a much sharper view. "We'll be able to see a bonfire on a beach," ECOSTRESS scientist Simon Hook says.

Four Things ECOSTRESS Can See From Space

Credit: USGS

2. Volcanoes

ECOSTRESS's thermal infrared imager will be able to spot new fissures and hotspots that can signal impending volcanic eruptions.

Four Things ECOSTRESS Can See From Space

The Chiliques volcano in Chile was thought to be dormant until thermal images revealed new activity. Credit: NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team

3. Urban Heat

The heat generated by a large city can compound the health hazards of heat waves, particularly for the oldest and youngest city dwellers. Which neighborhoods suffer from heat the most? With the very detailed images from ECOSTRESS, we'll be able to see which mitigation efforts are keeping neighborhoods cool.

Four Things ECOSTRESS Can See From Space

Urban areas can be up to 8 degrees warmer than surrounding suburban or natural landscapes, as seen here in a true-color image of the Atlanta area, top, and temperature data, bottom. Credit: NASA

4. Coastal and Inland Waters

Along coastlines and in large lakes, wind can push surface water aside allowing water from the depths to rise to the surface, bringing nutrients. These upwellings of cold water are important sources of nutrition for the coastal and lake plants and animals. ECOSTRESS can detect these smaller upwellings, providing valuable information for researchers.

Four Things ECOSTRESS Can See From Space

Upwelling can be seen in satellite data. Here temperature data (top) and chlorophyll concentrations (bottom) are shown around the Isthmus of Tehuantepec in Mexico. Credit: MODIS Ocean Color Team/Norman Kuring

Read more about the ECOSTRESS mission at https://ecostress.jpl.nasa.gov/. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Are We Alone? How NASA Is Trying to Answer This Question.

One of the greatest mysteries that life on Earth holds is, “Are we alone?”

image

At NASA, we are working hard to answer this question. We’re scouring the universe, hunting down planets that could potentially support life. Thanks to ground-based and space-based telescopes, including Kepler and TESS, we’ve found more than 4,000 planets outside our solar system, which are called exoplanets. Our search for new planets is ongoing — but we’re also trying to identify which of the 4,000 already discovered could be habitable.

image

Unfortunately, we can’t see any of these planets up close. The closest exoplanet to our solar system orbits the closest star to Earth, Proxima Centauri, which is just over 4 light years away. With today’s technology, it would take a spacecraft 75,000 years to reach this planet, known as Proxima Centauri b.

How do we investigate a planet that we can’t see in detail and can’t get to? How do we figure out if it could support life?

This is where computer models come into play. First we take the information that we DO know about a far-off planet: its size, mass and distance from its star. Scientists can infer these things by watching the light from a star dip as a planet crosses in front of it, or by measuring the gravitational tugging on a star as a planet circles it.

We put these scant physical details into equations that comprise up to a million lines of computer code. The code instructs our Discover supercomputer to use our rules of nature to simulate global climate systems. Discover is made of thousands of computers packed in racks the size of vending machines that hum in a deafening chorus of data crunching. Day and night, they spit out 7 quadrillion calculations per second — and from those calculations, we paint a picture of an alien world.

image

While modeling work can’t tell us if any exoplanet is habitable or not, it can tell us whether a planet is in the range of candidates to follow up with more intensive observations. 

image

One major goal of simulating climates is to identify the most promising planets to turn to with future technology, like the James Webb Space Telescope, so that scientists can use limited and expensive telescope time most efficiently.

image

Additionally, these simulations are helping scientists create a catalog of potential chemical signatures that they might detect in the atmospheres of distant worlds. Having such a database to draw from will help them quickly determine the type of planet they’re looking at and decide whether to keep observing or turn their telescopes elsewhere.

Learn more about exoplanet exploration, here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Getting to Mars: A New Rocket for the Journey

Do you know what the structural backbone is of our new rocket, the Space Launch System? If you answered the core stage, give yourself a double thumbs up! Or better yet, have astronaut Scott Kelly do it!

image

We’re on a journey to Mars. For bolder missions to deep space, we need a big, powerful rocket like SLS to take astronauts in the Orion spacecraft to places we've never gone before. The core stage is a major part of that story, as it will house the fuel and avionics systems that will power and guide the rocket to those new destinations beyond Earth’s orbit. Here's how:

It's Big, and It's Fast.

The core stage will be the largest rocket stage ever built and is under construction right now at our Michoud Assembly Facility in New Orleans. It will stand at 212 feet tall and weigh more than 2.3 million pounds with propellant. That propellant is cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle’s RS-25 engines. In just 8.5 minutes, the core stage will reach Mach 23, which is faster than 17,000 mph!

It's Smart.

image

Similar to a car, the rocket needs all the equipment necessary for the "drive" to deep space. The core stage will house the vehicle’s avionics, including flight computers, instrumentation, batteries, power handling, sensors and other electronics. That's a lot of brain power behind those orange-clad aluminum walls. *Fun fact: Orange is the color of the rocket's insulation.

It's a Five-Parter.

image

The core stage is made up of five parts. Starting from the bottom is the engine section, which will deliver the propellants to the four RS-25 engines. It also will house avionics to steer the engines, and be an attachment point for the two, five-segment solid rocket boosters. The engine section for the first SLS flight has completed welding and is in the final phases of manufacturing at Michoud.

image

Next up is the liquid hydrogen tank. It will hold 537,000 gallons of liquid hydrogen cooled to -423 degrees Fahrenheit. Right now, engineers are building the tank for the first SLS mission. It will look very similar to the qualification test article that just finished welding at Michoud. That's an impressive piece of rocket hardware!

image

The next part of the core stage is the intertank, which will join the propellant tanks. It has to be super strong because it is the attachment point for the boosters and absorbs most of the force when they fire 3.6 million pounds of thrust each. It's also a "think tank" of sorts, as it holds the SLS avionics and electronics. The intertank is even getting its own test structure at our Marshall Space Flight Center in Huntsville, Alabama.

image

And then there's the liquid oxygen tank. It will store 196,000 gallons of liquid oxygen cooled to -297 degrees. If you haven't done the math, that's 733,000 gallons of propellant for both tanks, which is enough to fill 63 large tanker trucks. Toot, toot. Beep, beep! A confidence version of the tank has finished welding at Michoud, and it's impressive. Just ask this guy.

image

The topper of the core stage is the forward skirt. Funny name, but serious hardware. It's home to the flight computers, cameras and avionics. The avionics system is being tested right now in a half-ring structure at the Marshall Center.

image

You can click here for more SLS core stage facts. We'll continue building, and see you at the launch pad for the first flight of SLS with Orion in 2018!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

10 Ways to Celebrate Halloween with NASA

There’s a whole universe of mysteries out there to put some fun—and maybe a touch of fright—into your All Hallows Eve festivities. Here are a few:

1. Universe of Monsters

Mythical monsters of Earth have a tough time of it. Vampires don’t do sunlight. Werewolves must wait for a full Moon to howl. Now, thanks to powerful space telescopes, some careful looking and a lot of whimsy, NASA scientists have found suitable homes for the most terrifying Halloween monsters.

image

2. Be a Spacecraft

No costume. No problem. NASA Blueshift offers some handy tips on transforming yourself into a powerful space telescope before hitting the sidewalk to trick-or-treat.

image

3. Robot Pumpkins

At Halloween, engineers at NASA’s Jet Propulsion Laboratory craft dramatic creations that have as much in common with standard jack-o'-lanterns as paper airplanes do with NASA spacecraft. The unofficial pumpkin carving contest gives engineers a chance to flex their creative muscles and bond as a team. The rules are simple: no planning, carving or competing during work hours.

The results? See for yourself!

Can’t wait to see this year’s creations? Do it yourself!

10 Ways To Celebrate Halloween With NASA
image
image

4. Skull Comet

Scientists think a large space rock that zipped past Earth on Halloween in 2015 was most likely a dead comet or an asteroid that, fittingly, bore an eerie resemblance to a skull.

"The object might be a dead comet, but in the (radar) images it appears to have donned a skull costume for its Halloween flyby," said NASA scientist Kelly Fast,

As with a lot of spooky things, the asteroid looked a lot less scary upon closer inspection.

image

5. Spooky Sun

Not to be outdone, the Sun—our star—has been known to put on a scary face.

In this October 2014 Solar Dynamic Observatory image, active regions on the Sun combined to look something like a jack-o-lantern’s face.

The active regions appear brighter because those are areas that emit more light and energy—markers of an intense and complex set of magnetic fields hovering in the Sun’s atmosphere, the corona. This image blends together two sets of wavelengths at 171 and 193 angstroms, typically colorized in gold and yellow, to create a particularly Halloween-like appearance.

image

6. Halloween on a Mission

Halloween held a special significance for NASA’s Cassini mission, which launched in October 1997. The team held its own elaborate pumpkin carving competitions for many years. The mission also shared whimsical Halloween greetingswith its home planet.

Cassini ended its extended mission at Saturn in 2017.

image

7. The Ghost of Cassiopeia

The brightest stars embedded in nebulae throughout our galaxy pour out a torrent of radiation that eats into vast clouds of hydrogen gas – the raw material for building new stars. This etching process sculpts a fantasy landscape where human imagination can see all kinds of shapes and figures. This nebula in the constellation of Cassiopeia has flowing veils of gas and dust that have earned it the nickname "Ghost Nebula."

image

8. They’re Everywhere

Turns out the human mind—including space scientists and engineers among us—find spooky shapes in many places.

This infrared view of the Helix Nebula reminded astronomers of a zombie eyeball.

image

9. What Do You See?

The Oct. 26 Earth Observatory’s Puzzler feature offers a spooky shape for your consideration. What is it and what does it look like? You tell us.

image

10. Space Candy

The trick-or-treat tradition is still—so far—pretty much confined to Earth. But thanks to the men and women who have been living aboard the International Space Station for more than 17 years, we have a preview of what a future space-based trick-or-treater’s Halloween candy haul would look like in microgravity.

image

Bonus: 11. Want More?

Our education team offers a bunch more Halloween activities, including space-themed pumpkin stencils, costume tips and even some mysteries to solve like a scientist or engineer.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What challenges have you overcame to get to the job that you have now? Love from Ireland ❤️


Tags
Loading...
End of content
No more pages to load
  • shadow-king-club
    shadow-king-club reblogged this · 4 days ago
  • andy202405
    andy202405 liked this · 1 month ago
  • sovanorsowan
    sovanorsowan liked this · 4 months ago
  • papawolf1969
    papawolf1969 liked this · 4 months ago
  • fae-td
    fae-td reblogged this · 5 months ago
  • pixion
    pixion liked this · 5 months ago
  • k-ru-h
    k-ru-h reblogged this · 6 months ago
  • k-ru-h
    k-ru-h liked this · 6 months ago
  • gaia-lapis-77
    gaia-lapis-77 liked this · 6 months ago
  • cartoon-cat7241
    cartoon-cat7241 liked this · 7 months ago
  • morebearsinheavenandearth
    morebearsinheavenandearth reblogged this · 8 months ago
  • hewhofightsmonsters
    hewhofightsmonsters liked this · 8 months ago
  • jasshands
    jasshands liked this · 8 months ago
  • beautiful-songbird
    beautiful-songbird reblogged this · 8 months ago
  • shadow-king-club
    shadow-king-club reblogged this · 9 months ago
  • shadow-king-club
    shadow-king-club liked this · 9 months ago
  • accidentallyoccidental
    accidentallyoccidental reblogged this · 10 months ago
  • doctarjaferson
    doctarjaferson liked this · 11 months ago
  • serah-e-nerd
    serah-e-nerd liked this · 1 year ago
  • blondiest
    blondiest liked this · 1 year ago
  • wh3r3ami
    wh3r3ami liked this · 1 year ago
  • norzairies
    norzairies liked this · 1 year ago
  • majestylokahisheena
    majestylokahisheena reblogged this · 1 year ago
  • techy-guy
    techy-guy reblogged this · 1 year ago
  • shivamthakrejr
    shivamthakrejr reblogged this · 1 year ago
  • shivamthakrejr
    shivamthakrejr liked this · 1 year ago
  • yourluckyoswald
    yourluckyoswald liked this · 1 year ago
  • traveliv13
    traveliv13 liked this · 1 year ago
  • mithuraju
    mithuraju liked this · 1 year ago
  • debbieb1124
    debbieb1124 liked this · 1 year ago
  • glow-stick-juice
    glow-stick-juice liked this · 1 year ago
  • cilantroboyof
    cilantroboyof liked this · 1 year ago
  • darkonekrisrewrite
    darkonekrisrewrite liked this · 1 year ago
  • sakuraswordly
    sakuraswordly reblogged this · 1 year ago
  • mtdreamcatcher
    mtdreamcatcher liked this · 1 year ago
  • annabethisterrified
    annabethisterrified liked this · 1 year ago
  • scalemodelarbysreplica
    scalemodelarbysreplica liked this · 1 year ago
  • beybladeteeth
    beybladeteeth liked this · 1 year ago
  • velkansg
    velkansg liked this · 1 year ago
  • ivy-srtaprimavera
    ivy-srtaprimavera reblogged this · 1 year ago
  • wordsandimages
    wordsandimages liked this · 1 year ago
  • de-sir-ee
    de-sir-ee liked this · 1 year ago
  • bunnygladstone
    bunnygladstone reblogged this · 1 year ago
  • doctorwhich
    doctorwhich reblogged this · 1 year ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags