TumblrFeed

Curate, connect, and discover

Solar System - Blog Posts

5 years ago

Stop. Drop. And Apply to #BeAnAstronaut!

image

Feel like your place is in the stars? Are you an adventure seeker, an explorer, a person passionate about science and space? We need you!!

image

Applications are OPEN for our newest class of #Artemis astronauts. Once chosen, you could be the next person to step foot on the Moon and eventually embark on missions to Mars!

image

Do you have a friend who should apply? Tag them. Do you know someone who's still in school? Encourage them to follow their dreams and aim high.

image

To give you a sneak peak of what life will be like if you decide to #BeAnAstronaut, we’re taking you behind-the-scenes of astronaut life over the course of March. 

image

APPLY NOW AND GET MORE INFORMATION HERE! 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
Even Star Systems Have Identity Crises. 🤷⁣ ⁣ According To Data From Observatories Like Our @nasachandraxray,
Even Star Systems Have Identity Crises. 🤷⁣ ⁣ According To Data From Observatories Like Our @nasachandraxray,

Even star systems have identity crises. 🤷⁣ ⁣ According to data from observatories like our @nasachandraxray, a double star system has been rapidly flipping between two alter egos: a low-mass X-ray binary and a millisecond pulsar. Astronomers found this volatile double system in a dense collection of stars known as Terzan 5.⁣ ⁣ The first image from @NASAHubble shows Terzan 5 in optical light. Swipe to see the new image where low, medium and high-energy X-rays detected by Chandra are colored red, green and blue respectively. Click the link in bio for more. ⁣ ⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
#TBT To 1989 When Voyager 2 Spotted Uranus Looking Like A Seemingly Perfect Robin’s Egg. 💙⁣ ⁣

#TBT to 1989 when Voyager 2 spotted Uranus looking like a seemingly perfect robin’s egg. 💙⁣ ⁣ When our Voyager 2 spacecraft flew by it in this image, one pole was pointing directly at the Sun. This means that no matter how much it spins, one half is completely in the sun at all times, and the other half is in total darkness.. ⁣ ⁣ Far-flung, Uranus – an ice giant of our solar system – is as mysterious as it is distant. Soon after its launch in 2021, our James Webb Space Telescope will change that by unlocking secrets of its atmosphere. ⁣ ⁣ Image Credit: NASA/JPL-Caltech⁣ ⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Signs You Might Be Ready to Apply to be a NASA Astronaut

Have you heard the news? Astronaut applications are opening soon (March 2), and there’s never been a better time to apply then now. Here are a few signs that might mean you’re ready to take to the stars: 

1. You Don’t Mind Having Roommates

image

When you’re an astronaut, you have to work and live with your crew mates for extended periods of time. It’s important to the mission and your safety that everyone can collaborate and work together.

2. You LOVE Space

image

If the Milky Way, planets and space travel doesn’t excite you then this might not be the perfect job for you. But if you love galaxies, space station research and deep space exploration, then maybe you should take a look at our application.

3. Adventure Doesn’t Scare You

image

Being an astronaut means that you get to take part in adventures that most people will never experience. Imagine: sitting on the launch pad in the Orion spacecraft, atop a rocket that’s getting ready to launch. You’ll travel farther into space than any other humans have been and help push the boundaries of technology in the proving ground of deep space lunar orbits, leading the way for future missions to Mars.

4. You Want to be on the Cutting Edge of Science

image

Not only do astronauts get to travel to space, but they also get to conduct really cool research in microgravity. Did you know that right now they’re monitoring veggie growth on the International Space Station? This research could help with our future deep space exploration and could teach us a few things about growing plants on Earth. Learn more about all the awesome research on the space station HERE.

5. You’re Not Afraid of Heights

image

One of the coolest things about being an astronaut, is that you get to go to SPACE! At the very least, you’ll travel to the International Space Station, which is 250 miles above Earth. Or, you could be one of the first astronauts to travel to a distant asteroid or even Mars!

6. You Like Meeting New People

image

Space is a place where people from all around the world come together to push the boundaries of human exploration. Whether you’re living on the space station with an international crew, or embarking on Artemis missions to the Moon – you’re sure to make new friendships wherever you go. 

7. Pizza is Life  

image

Meal time is family time aboard the space station, and what better way to bond than pizza night! Getting to know your crew mates AND channelling your inner chef is always a win win.

8. World Traveling is on Your Bucket List

image

The International Space Station orbits Earth 16 times a day, so get ready to rack up those frequent flyer miles! A favorite past time of many astronauts is Earth watching from the station’s cupola observatory. Get lost in the Pacific Ocean’s blue hue, gaze at the Himalayas or photograph your favorite cities all from a bird’s eye view. Get assigned to an Artemis Moon mission? Even better! Have fun expanding your travels to the solar system. 

9. You’ve Dreamed of Flying 

image

Perk about the job? Your childhood dreams to fly finally come true. Whether you’re floating around the International Space Station or getting adjusted to our new spaceship, Gateway, your inner superhero will be beaming. 

10. You Like Helping Others 

image

Astronauts don’t just push the boundaries of human exploration, they also help pave the way for scientific breakthroughs back at home. Thanks to the microgravity environment of space, discoveries not possible on Earth are able to be unlocked. Investigations into Parkinson’s Disease, cancer and more have been conducted on the orbital lab. 

Interested in applying to become an astronaut? You’re in luck, applications are open from March 2- 31! Learn about some common myths about becoming an astronaut HERE.

Get more info on applying to be one of our astronauts HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

When Dwarfs Meet Giants, and Other True Cosmic Fairy Tales

It’s easy to get lost in fantasy worlds through science-fiction movies and novels, but did you know that some of your favorite fairy tale characters actually exist in cosmic form? From dwarfs and giants to shape-shifters and buried treasure, the universe is home to a multitude of mystical objects.

White Dwarf Stars

image

You’ve probably heard of dwarfs like Happy and Sneezy (or Gimli and Thorin), but it’s unlikely you’re familiar with the space-dwelling dwarfs with names like Sirius B and ASASSN-16oh. White dwarf stars like these are typically about the size of Earth, which is pretty small as far as stars go. They represent one of three final stages of stellar evolution, along with neutron stars and black holes. Each star’s mass determines which one it will ultimately become. Stars much more massive than the Sun typically become neutron stars or black holes, and lower-mass stars end up as white dwarfs.

image

Our Sun will eventually become a white dwarf after it exhausts its fuel, but don’t worry — we’ve got several billion years to go! Before it is reduced to a white dwarf it will actually expand into a red giant, swelling out to encompass Earth’s orbit. But we don’t have to wait billions of years to see stellar giants … some already peek out at us from the cosmic deep.

Giants and Supergiants

image

The red giant star Aldebaran, located about 65 light-years away, is about 5,000 times bigger than Earth. Our Cassini spacecraft imaged Aldebaran through Saturn’s rings in 2006, but you can see it for yourself during northern winter. Just look for the brightest star in the constellation Taurus.

image

Fairy tale giants may be taller than trees, but these supergiant stars can be over 100,000 times “taller” than our entire planet! Supergiant stars are likely becoming more rare as time goes on. While scientists believe they used to be more common, our whole galaxy now contains just a small smattering of supergiants.

image

These massive stars grace the galaxy for a relatively small amount of time. They burn through their fuel extremely quickly — in just a few million years, as opposed to hundreds of billions of years for the smallest stars! Supergiants often end their lives in dramatic explosions called supernovae.

image

Betelgeuse — the bright, reddish star marking the shoulder of Orion — is nearing the end of its life and has expanded to become a red supergiant star. It is destined to explode as a supernova, which might happen tonight … or within the next few hundred thousand years.

Ghostly Solar Neutrinos

image

Even an average star like our Sun has some seemingly magical qualities. Each second, it sends billions of phantom-like neutrino particles out into space. They travel almost as fast as light and don’t usually interact with normal matter. Billions of them are zipping harmlessly straight through your body while you read this. Even at night they go through the entire Earth before reaching you!

image

But that’s not all … these ghostly particles are shape-shifters, too! Neutrinos can change characteristics over time, morphing between different versions of themselves. Spooky!

Buried Treasure in the Heart of the Galaxy

image

Extensive clouds of dust enshroud the heart of our Milky Way galaxy, hiding it from our view — at least when it comes to visible light. The dust isn’t as big a problem for infrared light, however, which has allowed us to get a glimpse of our galaxy’s chaotic core thanks to our Hubble and Spitzer space telescopes.

image

Future missions may peer into the galactic core in search of buried treasure — thousands of planets orbiting distant stars!

Want to learn about more cosmic objects? Find them here!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
Exploring Hell... Up For The Challenge?

Exploring Hell... up for the challenge?

Venus is an EXTREME world, and we’re calling on YOU to help us explore it! NASA Jet Propulsion Laboratory is running a public challenge to develop an obstacle avoidance sensor for a possible future Venus rover. 

With a surface temperature in excess of 840 degrees Fahrenheit and a surface pressure 92 times that of Earth, Venus can turn lead into a puddle and crush a nuclear-powered submarine with ease. While many missions have visited our sister planet, only about a dozen have made contact with the surface of Venus before succumbing to the oppressive heat and pressure after just about more than an hour.

The “Exploring Hell: Avoiding Obstacles on a Clockwork Rover” challenge is seeking the public’s designs for a sensor that could be incorporated into the design concept. The winning sensor could be the primary mechanism by which the rover detects and navigates around obstructions.

Award: 1st Place - $15,000; 2nd Place - $10,000; 3rd Place - $5,000

Open Date: February 18, 2020  ––––––––– Close Date: May 29, 2020


Tags
5 years ago
In Roman Mythology, The God Jupiter Drew A Veil Of Clouds Around Himself To Hide His Mischief. It Was
In Roman Mythology, The God Jupiter Drew A Veil Of Clouds Around Himself To Hide His Mischief. It Was

In Roman mythology, the god Jupiter drew a veil of clouds around himself to hide his mischief. It was only Jupiter's wife, the goddess Juno, who could peer through the clouds and reveal Jupiter's true nature. ⁣ ⁣ Our @NASAJuno spacecraft is looking beneath the clouds of the massive gas giant, not seeking signs of misbehavior, but helping us to understand the planet's structure and history...⁣ ⁣ Now, @NASAJuno just published its first findings on the amount of water in the gas giant’s atmosphere. The Juno results estimate that at the equator, water makes up about 0.25% of the molecules in Jupiter's atmosphere — almost three times that of the Sun. An accurate total estimate of this water is critical to solving the mystery of how our solar system formed. 

The JunoCam imager aboard Juno captured this image of Jupiter's southern equatorial region on Sept. 1, 2017. The bottom image is oriented so Jupiter's poles (not visible) run left-to-right of frame.

Image credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill ⁣ ⁣


Tags
5 years ago
INCOMING! Roving Scientist To Arrive On Mars. 

INCOMING! Roving scientist to arrive on Mars. 

Save the date! One year from today, Feb. 18, 2021, our next rover is set to land on Mars. Get to know #Mars2020 now! Click here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
It Was A Dark And Stormy Flyby... ⁣⁣

It was a dark and stormy flyby... ⁣⁣

Our @NASAJuno spacecraft's JunoCam captured images of the chaotic, stormy northern hemisphere of Jupiter during its 24th close pass of the giant planet on Dec. 26, 2019. Using data from the flyby, citizen scientist Kevin M. Gill created this color-enhanced image. At the time, the spacecraft was about 14,600 miles (23,500 kilometers) from the tops of Jupiter’s clouds, at a latitude of about 69 degrees north.⁣

Image Credit: Image data: NASA/JPL-Caltech/SwRI/MSSS⁣

Image processing by Kevin M. Gill, © CC BY⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
image

Need some space? We’ve got the job! 👨‍🚀👩‍🚀⁣

We’re accepting applications March 2-31 for the next class of #Artemis Generation astronauts who will embark on missions to the Moon and Mars. Join our class of star sailors and find out if you have what it takes to #BeAnAstronaut! 

The basic requirements to apply include United States citizenship and a master’s degree in a STEM field, including engineering, biological science, physical science, computer science, or mathematics, from an accredited institution. The requirement for the master’s degree can also be met by:

Two years (36 semester hours or 54 quarter hours) of work toward a Ph.D. program in a related science, technology, engineering or math field;

A completed doctor of medicine or doctor of osteopathic medicine degree;

Completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.

Candidates also must have at least two years of related, progressively responsible professional experience, or at least 1,000 hours of pilot-in-command time in jet aircraft. Astronaut candidates must pass the NASA long-duration spaceflight physical.

More information here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Cosmic Couples and Devastating Breakups

image

Relationships can be complicated — especially if you’re a pair of stars. Sometimes you start a downward spiral you just can’t get out of, eventually crash together and set off an explosion that can be seen 130 million light-years away.

For Valentine’s Day, we’re exploring the bonds between some of the universe’s peculiar pairs … as well as a few of their cataclysmic endings.

Stellar Couples

When you look at a star in the night sky, you may really be viewing two or more stars dancing around each other. Scientists estimate three or four out of every five Sun-like stars in the Milky Way have at least one partner. Take our old north star Thuban, for example. It’s a binary, or two-star, system in the constellation Draco.

image

Alpha Centauri, our nearest stellar neighbor, is actually a stellar triangle. Two Sun-like stars, Rigil Kentaurus and Toliman, form a pair (called Alpha Centauri AB) that orbit each other about every 80 years. Proxima Centauri is a remote red dwarf star caught in their gravitational pull even though it sits way far away from them (like over 300 times the distance between the Sun and Neptune).

image

Credit: ESO/Digitized Sky Survey 2/Davide De Martin/Mahdi Zamani

Sometimes, though, a stellar couple ends its relationship in a way that’s really disastrous for one of them. A black widow binary, for example, contains a low-mass star, called a brown dwarf, and a rapidly spinning, superdense stellar corpse called a pulsar. The pulsar generates intense radiation and particle winds that blow away the material of the other star over millions to billions of years.

image

Black Hole Beaus

In romance novels, an air of mystery is essential for any love interest, and black holes are some of the most mysterious phenomena in the universe. They also have very dramatic relationships with other objects around them!

Scientists have observed two types of black holes. Supermassive black holes are hundreds of thousands to billions of times our Sun’s mass. One of these monsters, called Sagittarius A* (the “*” is pronounced “star”), sits at the center of our own Milky Way. In a sense, our galaxy and its black hole are childhood sweethearts — they’ve been together for over 13 billion years! All the Milky-Way-size galaxies we’ve seen so far, including our neighbor Andromeda (pictured below), have supermassive black holes at their center!

image

These black-hole-galaxy power couples sometimes collide with other, similar pairs — kind of like a disastrous double date! We’ve never seen one of these events happen before, but scientists are starting to model them to get an idea of what the resulting fireworks might look like.

image

One of the most dramatic and fleeting relationships a supermassive black hole can have is with a star that strays too close. The black hole’s gravitational pull on the unfortunate star causes it to bulge on one side and break apart into a stream of gas, which is called a tidal disruption event.

image

The other type of black hole you often hear about is stellar-mass black holes, which are five to tens of times the Sun’s mass. Scientists think these are formed when a massive star goes supernova. If there are two massive stars in a binary, they can leave behind a pair of black holes that are tied together by their gravity. These new black holes spiral closer and closer until they crash together and create a larger black hole. The National Science Foundation’s LIGO project has detected many of these collisions through ripples in space-time called gravitational waves.

image

Credit: LIGO/T. Pyle

Here’s hoping your Valentine’s Day is more like a peacefully spiraling stellar binary and less like a tidal disruption! Learn how to have a safe relationship of your own with black holes here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
It’s Official - We’re Headed To Do Science On The Sun! ☀️

It’s official - we’re headed to do science on the Sun! ☀️

At 11:03 p.m. EST on Sunday, Feb. 9, Solar Orbiter, an international collaboration between the European Space Agency and NASA, launched aboard United Launch Alliance’s #AtlasV rocket for its journey to our closest star. The spacecraft will help us understand how the Sun creates and controls the constantly changing space environment throughout the solar system. The more we understand about the Sun’s influence on the planets in our solar system and the space we travel through, the more we can protect our astronauts and spacecraft as we journey to the Moon, to Mars and beyond. More here. 

Image Credit: NASA Social participant, Jared Frankle

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

You’ve seen things floating in space, but why does that happen and how does it affect science being conducted aboard the International Space Station?

Sure, floating looks like fun, but it could also unlock new scientific discoveries!

Microgravity makes the International Space Station the perfect place to perform research that is changing the lives of people on Earth, and preparing us to go deeper into space. This season on our series NASA Explorers, we are following science into low-Earth orbit and seeing what it takes to do research aboard the space station. 

Follow NASA Explorers on Facebook to catch new episodes of season 4 every Wednesday. https://www.facebook.com/NASAExplorersSeries/


Tags
5 years ago

Taking Solar Science to New Heights

We're on the verge of launching a new spacecraft to the Sun to take the first-ever images of the Sun's north and south poles!

image

Credit: ESA/ATG medialab

Solar Orbiter is a collaboration between the European Space Agency (ESA) and NASA. After it launches — as soon as Feb. 9 — it will use Earth's and Venus's gravity to swing itself out of the ecliptic plane — the swath of space, roughly aligned with the Sun’s equator, where all the planets orbit. From there, Solar Orbiter's bird’s eye view will give it the first-ever look at the Sun's poles.

image

Credit: ESA/ATG medialab

The Sun plays a central role in shaping space around us. Its massive magnetic field stretches far beyond Pluto, paving a superhighway for charged solar particles known as the solar wind. When bursts of solar wind hit Earth, they can spark space weather storms that interfere with our GPS and communications satellites — at their worst, they can even threaten astronauts.

To prepare for potential solar storms, scientists monitor the Sun’s magnetic field. But from our perspective near Earth and from other satellites roughly aligned with Earth's orbit, we can only see a sidelong view of the Sun's poles. It’s a bit like trying to study Mount Everest’s summit from the base of the mountain.

image

Solar Orbiter will study the Sun's magnetic field at the poles using a combination of in situ instruments — which study the environment right around the spacecraft — and cameras that look at the Sun, its atmosphere and outflowing material in different types of light. Scientists hope this new view will help us understand not only the Sun's day-to-day activity, but also its roughly 11-year activity cycles, thought to be tied to large-scales changes in the Sun's magnetic field.

Solar Orbiter will fly within the orbit of Mercury — closer to our star than any Sun-facing cameras have ever gone — so the spacecraft relies on cutting-edge technology to beat the heat.

image

Credit: ESA/ATG medialab

Solar Orbiter has a custom-designed titanium heat shield with a calcium phosphate coating that withstands temperatures more than 900 degrees Fahrenheit — 13 times the solar heating that spacecraft face in Earth orbit. Five of the cameras look at the Sun through peepholes in that heat shield; one observes the solar wind out the side.

Over the mission’s seven-year lifetime, Solar Orbiter will reach an inclination of 24 degrees above the Sun’s equator, increasing to 33 degrees with an additional three years of extended mission operations. At closest approach the spacecraft will pass within 26 million miles of the Sun.

Solar Orbiter will be our second major mission to the inner solar system in recent years, following on August 2018’s launch of Parker Solar Probe. Parker has completed four close solar passes and will fly within 4 million miles of the Sun at closest approach.

image

Solar Orbiter (green) and Parker Solar Probe (blue) will study the Sun in tandem. 

The two spacecraft will work together: As Parker samples solar particles up close, Solar Orbiter will capture imagery from farther away, contextualizing the observations. The two spacecraft will also occasionally align to measure the same magnetic field lines or streams of solar wind at different times.

Watch the launch

image

The booster of a United Launch Alliance Atlas V rocket that will launch the Solar Orbiter spacecraft is lifted into the vertical position at the Vertical Integration Facility near Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida on Jan. 6, 2020. Credit: NASA/Ben Smegelsky

Solar Orbiter is scheduled to launch on Feb. 9, 2020, during a two-hour window that opens at 11:03 p.m. EST. The spacecraft will launch on a United Launch Alliance Atlas V 411 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Launch coverage begins at 10:30 p.m. EST on Feb. 9 at nasa.gov/live. Stay up to date with mission at nasa.gov/solarorbiter!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What are you most excited to see on your next flight? Or, what natural phenomena do you enjoy seeing the most? Thank you!


Tags
5 years ago

Chart-Topping Space Images From 2019 You Won’t Want to Miss

From the first-ever image of a black hole, to astronaut Christina Koch breaking the record for the longest single spaceflight by a woman – 2019 was full of awe-inspiring events! 

As we look forward to a new decade, we’ve taken ten of our top Instagram posts and put them here for your viewing pleasure. With eight out of ten being carousels, be sure to click on each title to navigate to the full post. 

1. First-Ever Black Hole Image Makes History 

image

In a historic feat by the Event horizon Telescope and National Science Foundation, an image of a black hole and its shadow was captured for the first time. At a whopping 3.4 million likes, this image takes home the gold as our most loved photo of 2019. Several of our missions were part of a large effort to observe this black hole using different wavelengths of light and collect data to understand its environment. Here’s a look at our Chandra X-Ray Observatory’s close-up of the core of the M87 galaxy with the imaged black hole at its center.  

2. Hubble Celebrates 29 Years of Dazzling Discoveries

image
image

When you wish upon a star… Hubble captures it from afar ✨On April 18, 2019 our Hubble Space Telescope celebrated 29 years of dazzling discoveries, serving as a window to the wonders of worlds light-years away. ⁣

Hubble continues to observe the universe in near-ultraviolet, visible, and near-infrared light. Over the past 29 years, it has captured the farthest views ever taken of the evolving universe, found planet-forming disks around nearby stars and identified the first supermassive black hole in the heart of a neighboring galaxy. ⁣Want more? Enjoy the full 10 photo Instagram carousel here. 

3. Stars and Stripes in Space for Flag Day 

image
image

Patriotism was in the air June 14 for Flag Day, and coming in at number three in our most liked Instagram line up is a carousel of our stars and stripes in space! One of the most iconic images from the Apollo 11 missions is of Buzz Aldrin saluting the American flag on the surface of the Moon. But did you know that over the years, five more flags joined the one left by Apollo 11 – and that many other flags have flown onboard our spacecraft? Scroll through the full carousel for flag day here. 

4. Spitzer Celebrates its Super Sweet 16! 

image
image

Since 2003, our Spitzer Space Telescope has been lifting the veil on the wonders of the cosmos, from our own solar system to faraway galaxies, using infrared light! Thanks to Spitzer, we've confirm the presence of seven rocky, Earth-size planets, received weather maps of hot, gaseous exoplanets and discovered a hidden ring around Saturn. In honor of Spitzer's Sweet 16 in space, enjoy 16 jaw-dropping images from its mission here. 

5. Earth as Seen Through Our Astronauts’ Eyes Show  Perspective Changing Views

image

“That's here. That's home. That's us.” – Carl Sagan

Seeing Earth from space can alter an astronauts’ cosmic perspective, a mental shift known as the “Overview Effect.” First coined by space writer Frank White in 1987, the Overview Effect is described as a feeling of awe for our home planet and a sense of responsibility for taking care of it. See Earth from the vantage point of our astronauts in a carousel of perspective-changing views here.

6. Astronaut Christina Koch Breaks Record for Longest Single Spaceflight by Woman 

image
image

Astronaut Christina Koch (@Astro_Christina) set a record Dec. 28, 2019 for the longest single spaceflight by a woman, eclipsing the former record of 288 days set by Peggy Whitson. Her long-duration mission is helping us learn how to keep astronauts healthy for deep space exploration to the Moon and Mars. Congrats to Christina on reaching new heights! Join in the celebration and view few photos she captured from her vantage point aboard the Space Station here. 

7. Our Beautiful Planet – The Only Place We Know to Harbor Life – From Space

image
image

Earth is special. It’s the only place in the universe that we know contains life. 

On July 7, 2019, two million people joined us in celebrating its beauty with a jaw dropping carousel of our home planet, as captured by crew members aboard the International Space Station. Bright blue oceans, glowing city lights and ice-capped mountain peaks come to life in a collection of breathtaking images, found here. 

8. A Moon Even Sinatra Couldn’t Help But Sing About

image

Every 29 days our Moon turns over a new leaf, and on May, 18 we saw a very special one of its faces. Appearing opposite the Sun at 5:11 p.m. EDT, the world looked up to find a Blue Moon! Though the Moon didn’t actually look blue, the site of one is kind of rare. They occur on average about every two-and-a-half years when a season ends up having four full moons instead of three. Click through a carousel of high-definition lunar phases here. 

9. The Majesty of Hubble Imagery ... From Your Backyard

image
image

On December 23, a new gallery of Hubble Space Telescope images highlighting celestial objects visible to amateur and professional astronomers alike was released. All of the objects are from a collection known as the Caldwell catalog, which includes 109 interesting objects visible in amateur-sized telescopes in both the northern and southern skies. Flip through the jaw-dropping carousel here, and learn more about how you can study the night sky with Hubble here. 

10. The Moon Gets Sassy

image

Nobody:

The Moon: “Y'all on the way yet?” 👀

We're working on it, Moon. Under the Artemis program, we're sending the first woman and the next man to walk on your surface by 2024. Find out how we’re doing it here. 

image

For more pictures like these, follow us on Instagram: https://www.instagram.com/nasa/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Celestial Mechanics Around the Solar System During December 2019

The dance of planets, moons and spacecraft around the solar system creates a host of rare alignments in late December 2019. Here's what's coming up.

Dec. 21: Winter solstice in the Northern Hemisphere

Dec. 21 is the 2019 winter solstice for the Northern Hemisphere. A solstice marks the point at which Earth's tilt is at the greatest angle to the plane of its orbit, also the point where half of the planet is receiving the longest stretch of daylight and the other the least. There are two solstices a year, in June and December: the summer and winter solstices, respectively, in the Northern Hemisphere.

image

The winter solstice is the longest night of the year, when that hemisphere of Earth is tilted farthest from the Sun and receives the fewest hours of sunlight in a given year. Starting Dec. 21, the days will get progressively longer until the June solstice for those in the Northern Hemisphere, and vice versa for the Southern Hemisphere.  

Dec. 26: Annular solar eclipse visible in Asia

On Dec. 26, an annular solar eclipse will be visible in parts of Asia. During an annular eclipse, the Moon's apparent size is too small to completely cover the face of the Sun, creating a "ring of fire" around the Moon's edge during the eclipse.

image

Credit: Dale Cruikshank

Solar eclipses happen when the Moon lines up just right with the Sun and Earth. Though the Moon orbits Earth about once a month, the tilt in its orbit means that it's relatively rare for the Moon to pass right in line between the Sun and Earth — and those are the conditions that create an eclipse. Depending on the alignment, the Moon can create a partial, total or annular solar eclipse.

image

On Dec. 26, the Moon will be near perigee, the point in its orbit when it's farthest from Earth. That means its apparent size from Earth is just a bit smaller — and that difference means that it won't completely cover the Sun during the Dec. 26 eclipse. Instead, a ring of the bright solar surface will be visible around the Moon during the point of greatest eclipse. This is called an annular eclipse.

It is never safe to look directly at an annular solar eclipse, because part of the Sun is always visible. If you're in the path of the annular eclipse, be sure to use solar viewing glasses (not sunglasses) or another safe viewing method to watch the eclipse.

Dec. 26: Parker Solar Probe flies by Venus

After the eclipse, more than 100 million miles away from Earth, Parker Solar Probe will pull off a celestial maneuver of its own. On Dec. 26, the spacecraft will perform the second Venus gravity assist of the mission to tighten its orbit around the Sun.

image

During the seven gravity assists throughout the mission, Parker Solar Probe takes advantage of Venus's gravity to slow down just the right amount at just the right time. Losing some of its energy allows the spacecraft to be drawn closer by the Sun's gravity: It will fly by the Sun's surface at just 11.6 million miles during its next solar flyby on Jan. 29, 2020. During this flyby, Parker Solar Probe will break its own record for closest-ever spacecraft to the Sun and will gather new data to build on the science already being shared from the mission.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Neutron Stars Are Even Weirder Than We Thought

Let’s face it, it’s hard for rapidly-spinning, crushed cores of dead stars NOT to be weird. But we’re only beginning to understand how truly bizarre these objects — called neutron stars — are.

image

Neutron stars are the collapsed remains of massive stars that exploded as supernovae. In each explosion, the outer layers of the star are ejected into their surroundings. At the same time, the core collapses, smooshing more than the mass of our Sun into a sphere about as big as the island of Manhattan.

image

Our Neutron star Interior Composition Explorer (NICER) telescope on the International Space Station is working to discover the nature of neutron stars by studying a specific type, called pulsars. Some recent results from NICER are showing that we might have to update how we think about pulsars!

Here are some things we think we know about neutron stars:

Pulsars are rapidly spinning neutron stars ✔︎

Pulsars get their name because they emit beams of light that we see as flashes. Those beams sweep in and out of our view as the star rotates, like the rays from a lighthouse.

image

Pulsars can spin ludicrously fast. The fastest known pulsar spins 43,000 times every minute. That’s as fast as blender blades! Our Sun is a bit of a slowpoke compared to that — it takes about a month to spin around once.

The beams come from the poles of their strong magnetic fields ✔︎

Pulsars also have magnetic fields, like the Earth and Sun. But like everything else with pulsars, theirs are super-strength. The magnetic field on a typical pulsar is billions to trillions of times stronger than Earth’s!

image

Near the magnetic poles, the pulsar’s powerful magnetic field rips charged particles from its surface. Some of these particles follow the magnetic field. They then return to strike the pulsar, heating the surface and causing some of the sweeping beams we see.

The beams come from two hot spots… ❌❓✔︎ 🤷🏽

Think of the Earth’s magnetic field — there are two poles, the North Pole and the South Pole. That’s standard for a magnetic field.

image

On a pulsar, the spinning magnetic field attracts charged particles to the two poles. That means there should be two hot spots, one at the pulsar’s north magnetic pole and the other at its south magnetic pole.

This is where things start to get weird. Two groups mapped a pulsar, known as J0030, using NICER data. One group found that there were two hot spots, as we might have expected. The other group, though, found that their model worked a little better with three (3!) hot spots. Not two.

… that are circular … ❌❓✔︎ 🤷🏽

The particles that cause the hot spots follow the magnetic field lines to the surface. This means they are concentrated at each of the magnetic poles. We expect the magnetic field to appear nearly the same in any direction when viewed from one of the poles. Such symmetry would produce circular hot spots.

image

In mapping J0030, one group found that one of the hot spots was circular, as expected. But the second spot may be a crescent. The second team found its three spots worked best as ovals.

… and lie directly across from each other on the pulsar ❌❓✔︎ 🤷🏽

Think back to Earth’s magnetic field again. The two poles are on opposite sides of the Earth from each other. When astronomers first modeled pulsar magnetic fields, they made them similar to Earth’s. That is, the magnetic poles would lie at opposite sides of the pulsar.

image

Since the hot spots happen where the magnetic poles cross the surface of the pulsar, we would expect the beams of light to come from opposite sides of the pulsar.

image

But, when those groups mapped J0030, they found another surprising characteristic of the spots. All of the hot spots appear in the southern half of the pulsar, whether there were two or three of them.

image

This also means that the pulsar’s magnetic field is more complicated than our initial models!

J0030 is the first pulsar where we’ve mapped details of the heated regions on its surface. Will others have similarly bizarre-looking hotspots? Will they bring even more surprises? We’ll have to stay tuned to NICER find out!

And check out the video below for more about how this measurement was done.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

10 Ways the 2010s Pushed Communication and Navigation into the Future!

We transmit vast amounts of data from space, letting all of our satellites “phone home.” Imagery from far off regions of our solar system, beautiful visions of other galaxies and insights into planet Earth flow through our communications networks. 

Our Space Communications and Navigation (SCaN) program is dedicated to making sure we precisely track, command and control our spacecraft. All the while, they develop bold new technologies and capabilities for Artemis – our sustainable lunar exploration program that will place the first woman and the next man on the Moon in 2024. 

As we prepare to say goodbye to the 2010s, let’s take a look at 10 of the biggest milestones in space communications and navigation of the past decade. 

1. Continuous global communications? TDRS has you covered.

image

From 2013 to 2017, we launched three Tracking and Data Relay Satellites, or TDRS for short. These new satellites replenished a fleet that has been around since the early 1980s, allowing us to provide continuous global communications coverage into the next decade. Missions like the International Space Station depend on TDRS for 24/7 coverage, allowing our astronauts to call home day or night.

2. Binge watching on the Moon? Laser communications will make it possible.

image

Imagine living at the Moon. With the Artemis program, we’re making it happen! However, we can’t live there without decent internet, right? In 2013, we conducted the Lunar Laser Communication Demonstration (LLCD). This was the first high-speed laser communications demonstration from the Moon, transmitting data at a whopping 622 megabits per second, which is comparable to many high-speed fiber-optic connections enjoyed at home on Earth! Our LLCD sent back high-definition video with no buffering. 

3. Record Breaking GPS navigation, at your service.

Space communications is just one piece of the SCaN puzzle. We do navigation too! We even break records for it. In 2016, our Magnetospheric Multiscale (MMS) mission broke the world record for highest altitude GPS fix at 43,500 miles above Earth. In 2017, they broke it again at 93,200 miles. Earlier this year, they broke it a third time at 116,200 miles from Earth — about halfway to the Moon!

Thanks to MMS, our navigation engineers believe that GPS and similar navigation constellations could play a significant role in the navigation architecture of our planned Gateway spaceship in lunar orbit!

4. Crashing planes as part of the game – of research!  

image

Then there was that one summer we crashed three planes in the name of research! In 2015, our Search and Rescue office tested crash scenarios at Langley Research Center’s Landing and Impact Research Facility to improve the reliability of emergency beacons installed in planes. After the study, we made recommendations on how pilots should install these life-saving beacons, increasing their chances of survival in the event of a crash. The Federal Aviation Administration adopted these recommendations this year!

5. The Deep Space Atomic Clock takes flight. 

image

Missions venturing into deep space want the autonomy to make decisions without waiting for a commands from Earth. That’s why we launched the Deep Space Atomic Clock this past year. This itty-bitty technology demonstration is a small, ultra-stable timekeeping device that could enable autonomous navigation!

6. 50 never looked so good – for our Deep Space Network. 

image

In 2013, our Deep Space Network celebrated its 50th birthday! This is the network that transmitted Neil Armstrong’s famous words, "That's one small step for (a) man, one giant leap for mankind." Some of its more recent accomplishments? Gathering the last bits of data before Cassini dove into Saturn’s upper atmosphere, pulling down the “heart” of Pluto and talking to the Voyager probes as they journeyed into interstellar space!

7. SCaN Testbed becomes an official Hall of Famer. 

image

In 2012, we installed the SCaN Testbed, which looks like a blue box in the above picture, on the space station! We built the testbed out of Software Defined Radios, which can change their functionality and employ artificial intelligence. These radios will help us adapt to the increasingly crowded communications landscape and improve the efficiency of radio technology. The Testbed was so ground-breaking that it was inducted into the Space Technology Hall of Fame in 2019.

8. Moon mission communications system, secured! 

image

Just a few weeks ago, we held a ribbon-cutting for the Near Earth Network’s Launch Communications Segment, which will support Artemis missions as they rocket toward the Moon! During initial, dynamic phases of launch, the segment’s three stations will provide communications between astronauts and mission controllers, giving them the data necessary to ensure crew safety. 

9. Deep Space Station antenna introduces “beam waveguide” technology. 

image

On October 1, 2014, in Canberra, Australia, the Deep Space Network’s Deep Space Station 35 (DSS-35) antenna went operational. It was the first of a number of new antennas built to support the growing number of deep space missions! The antenna is different from other antennas that were built before it. Older antennas had a lot of their equipment stored high up on the antenna above the dish. DSS-35 uses “beam waveguide” technology that stores that equipment underground. This makes the weight sitting on the dish much lighter, cuts down on interference and makes the antenna much easier to operate and maintain.

10. Hello, Alaska! 

image

Last — but certainly not least — we expanded our presence in the 49th state, Alaska! While this picture might look like antennas rising from the forests of  Endor, the one in the foreground is actually an antenna we installed in 2014 in partnership with the University of Alaska Fairbanks. Because of its proximity to the polar north, this 11-meter beauty is uniquely situated to pull down valuable Earth science data from our polar-orbiting spacecraft, contributing to scientists’ understanding of our changing planet!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago
Completely Invisible, Yet Unbelievably Influential. 💫

Completely invisible, yet unbelievably influential. 💫

According to new research from our Stratospheric Observatory for Infrared Astronomy (SOFIA), spiral galaxies like the Milky Way are shaped by magnetic fields. These magnetic fields are invisible to the human eye.

However, by combining imagery from our Hubble Space Telescope, the Nuclear Spectroscopic Array and the Sloan Digital Sky Survey, the magnetic fields become apparent. In this image, scientists measured the magnetic fields along the spiral arms of the galaxy called NGC 1068. The fields are shown as streamlines that closely follow the circling arms.

Image Credit: NASA/SOFIA; NASA/JPL-Caltech/Roma Tre Univ.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What’s aboard SpaceX’s Dragon?

On Dec 5. 2019, a SpaceX Falcon 9 rocket blasted off from Cape Canaveral Air Force Station in Florida carrying a Dragon cargo capsule filled with dozens of scientific experiments. Those experiments look at everything from malting barley in microgravity to the spread of fire.

What’s Aboard SpaceX’s Dragon?

Not only are the experiments helping us better understand life in space, they also are giving us a better picture of our planet and benefiting humanity back on Earth. 

📸 A Better Picture of Earth 🌏

Every material on the Earth’s surface – soil, rocks, vegetation, snow, ice and human-made objects – reflects a unique spectrum of light. The Hyperspectral Imager Suite (HISUI) takes advantage of this to identify specific materials in an image. It could be useful for tasks such as resource exploration and applications in agriculture, forestry and other environmental areas.

image

🌱 Malting Barley in Microgravity 🌱

Many studies of plants in space focus on how they grow in microgravity. The Malting ABI Voyager Barley Seeds in Microgravity experiment is looking at a different aspect of plants in space: the malting process. Malting converts starches from grain into various sugars that can be used for brewing, distilling and food production. The study compares malt produced in space and on the ground for genetic and structural changes, and aims to identify ways to adapt it for nutritional use on spaceflights.

image

🛰️ A First for Mexico 🛰️

AztechSat-1, the first satellite built by students in Mexico for launch from the space station, is smaller than a shoebox but represents a big step for its builders. Students from a multidisciplinary team at Universidad Popular Autónoma del Estado de Puebla in Puebla, Mexico, built the CubeSat. This investigation demonstrates communication within a satellite network in low-Earth orbit. Such communication could reduce the need for ground stations, lowering the cost and increasing the number of data downloads possible for satellite applications.

image

🚀 Checking for Leaks 🚀

Nobody wants a spacecraft to spring a leak – but if it happens, the best thing you can do is locate and fix it, fast. That’s why we launched the first Robotic External Leak Locator (RELL) in 2015. Operators can use RELL to quickly detect leaks outside of station and help engineers formulate a plan to resolve an issue. On this latest commercial resupply mission, we launched the Robotic Tool Stowage (RiTS), a docking station that allows the RELL units to be stored on the outside of space station, making it quicker and simpler to deploy the instruments.

image

🔥 The Spread of Fire 🔥

Understanding how fire spreads in space is crucial for the safety of future astronauts and for controlling fire here on Earth. The Confined Combustion investigation examines the behavior of flame as it spreads in differently-shaped spaces in microgravity. Studying flames in microgravity gives researchers a chance to look at the underlying physics and basic principles of combustion by removing gravity from the equation.

image

💪 Staying Strong 💪

Here on Earth you might be told to drink milk to grow up with strong bones, but in space, you need a bit more than that. Astronauts in space have to exercise for hours a day to prevent substantial bone and muscle loss. A new experiment, Rodent Research-19, is seeing if there is another way to prevent the loss by targeting signaling pathways in your body at the molecular level. The results could also support treatments for a wide range of conditions that cause muscle and bone loss back here on Earth.

image

Want to learn about more investigations heading to the space station (or even ones currently under way)? Make sure to follow @ISS_Research on Twitter and Space Station Research and Technology News on Facebook. 

If you want to see the International Space Station with your own eyes, check out Spot the Station to see it pass over your town.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

New Science from our Mission to Touch the Sun

image

In August 2018, our Parker Solar Probe mission launched to space, soon becoming the closest-ever spacecraft from the Sun. Now, scientists have announced their first discoveries from this exploration of our star!

The Sun may look calm to us here on Earth, but it's an active star, unleashing powerful bursts of light, deluges of particles moving near the speed of light and billion-ton clouds of magnetized material. All of this activity can affect our technology here on Earth and in space.

Parker Solar Probe's main science goals are to understand the physics that drive this activity — and its up-close look has given us a brand-new perspective. Here are a few highlights from what we've learned so far.

1. Surprising events in the solar wind

The Sun releases a continual outflow of magnetized material called the solar wind, which shapes space weather near Earth. Observed near Earth, the solar wind is a relatively uniform flow of plasma, with occasional turbulent tumbles. Closer to the solar wind's source, Parker Solar Probe saw a much different picture: a complicated, active system. 

One type of event in particular drew the eye of the science teams: flips in the direction of the magnetic field, which flows out from the Sun, embedded in the solar wind. These reversals — dubbed "switchbacks" — last anywhere from a few seconds to several minutes as they flow over Parker Solar Probe. During a switchback, the magnetic field whips back on itself until it is pointed almost directly back at the Sun.

image

The exact source of the switchbacks isn't yet understood, but Parker Solar Probe's measurements have allowed scientists to narrow down the possibilities — and observations from the mission's 21 remaining solar flybys should help scientists better understand these events. 

2. Seeing tiny particle events

The Sun can accelerate tiny electrons and ions into storms of energetic particles that rocket through the solar system at nearly the speed of light. These particles carry a lot of energy, so they can damage spacecraft electronics and even endanger astronauts, especially those in deep space, outside the protection of Earth's magnetic field — and the short warning time for such particles makes them difficult to avoid.

image

Energetic particles from the Sun impact a detector on ESA & NASA's SOHO satellite.

Parker Solar Probe's energetic particle instruments have measured several never-before-seen events so small that all trace of them is lost before they reach Earth. These instruments have also measured a rare type of particle burst with a particularly high number of heavier elements — suggesting that both types of events may be more common than scientists previously thought.

3. Rotation of the solar wind

Near Earth, we see the solar wind flowing almost straight out from the Sun in all directions. But the Sun rotates as it releases the solar wind, and before it breaks free, the wind spins along in sync with the Sun's surface. For the first time, Parker was able to observe the solar wind while it was still rotating – starting more than 20 million miles from the Sun.

image

The strength of the circulation was stronger than many scientists had predicted, but it also transitioned more quickly than predicted to an outward flow, which helps mask the effects of that fast rotation from the vantage point where we usually see them from, near Earth, about 93 million miles away. Understanding this transition point in the solar wind is key to helping us understand how the Sun sheds energy, with implications for the lifecycles of stars and the formation of protoplanetary disks.

4. Hints of a dust-free zone

Parker also saw the first direct evidence of dust starting to thin out near the Sun – an effect that has been theorized for nearly a century, but has been impossible to measure until now. Space is awash in dust, the cosmic crumbs of collisions that formed planets, asteroids, comets and other celestial bodies billions of years ago. Scientists have long suspected that, close to the Sun, this dust would be heated to high temperatures by powerful sunlight, turning it into a gas and creating a dust-free region around the Sun.

image

For the first time, Parker's imagers saw the cosmic dust begin to thin out a little over 7 million miles from the Sun. This decrease in dust continues steadily to the current limits of Parker Solar Probe's instruments, measurements at a little over 4 million miles from the Sun. At that rate of thinning, scientists expect to see a truly dust-free zone starting a little more than 2-3 million miles from the Sun — meaning the spacecraft could observe the dust-free zone as early as 2020, when its sixth flyby of the Sun will carry it closer to our star than ever before.

These are just a few of Parker Solar Probe's first discoveries, and there's plenty more science to come throughout the mission! For the latest on our Sun, follow @NASASun on Twitter and NASA Sun Science on Facebook.


Tags
5 years ago

From Discovering the Secrets of the Universe to In-Space Servicing, We’ve Got The Tools for the Job

If you need to fix something on Earth, you could go to a store, buy the tools you need, and get started. In space, it’s not that easy.

image

Aside from the obvious challenges associated with space (like it being cold and there being no gravity), developing the right tools requires a great deal of creativity because every task is different, especially when the tools need to be designed from scratch. From the time an engineer dreams up the right tools to the time they are used in space, it can be quite a process.

On Nov. 15, astronauts Luca Parmitano and Drew Morgan began a series of spacewalks to repair an instrument called the Alpha Magnetic Spectrometer (AMS-2) on the exterior of the International Space Station. The first of four spacewalk focused on using specialized tools to remove shields and covers, to gain access to the heart of AMS to perform the repairs, and install a new cooling system.

image

The debris shield that covered Alpha Magnetic Spectrometer floats away toward Earth as astronaut Drew Morgan successfully releases it.

Once repaired, AMS will continue to help us understand more about the formation of the universe and search for evidence of dark matter and antimatter.

These spacewalks, or extravehicular activities (EVAs), are the most complex of their kind since the servicing of the Hubble Space Telescope. AMS is particularly challenging to repair not only because of the instrument’s complexity and sensitivity, but also because it was never designed to be fixed. Because of this design, it does not have the kinds of interfaces that make spacewalks easier, or the ability to be operated on with traditional multi-purpose tools. These operations are so complex, their design and planning has taken four years. Let’s take a look at how we got ready to repair AMS.

image

Thinking Outside of the (Tool) Box

When designing the tools, our engineers need to keep in mind various complications that would not come into play when fixing something on Earth. For example, if you put a screw down while you’re on Earth, gravity will keep it there — in space, you have to consistently make sure each part is secure or it will float away. You also have to add a pressurized space suit with limited dexterity to the equation, which further complicates the tool design.

image

In addition to regular space complications, the AMS instrument itself presents many challenges — with over 300,000 data channels, it was considered too complex to service and therefore was not designed to one day be repaired or updated if needed. Additionally, astronauts have never before cut and reconnected micro-fluid lines (4 millimeters wide, less than the width of the average pencil) during a spacewalk, which is necessary to repair AMS, so our engineers had to develop the tools for this big first. 

image

With all of this necessary out-of-the-box thinking, who better to go to for help than the teams that worked on the most well-known repair missions — the Hubble servicing missions and the space station tool teams? Building on the legacy of these missions, some of our same engineers that developed tools for the Hubble servicing missions and space station maintenance got to work designing the necessary tools for the AMS repair, some reworked from Hubble, and some from scratch. In total, the teams from Goddard Space Flight Center’s Satellite Servicing Projects Division, Johnson Space Center, and AMS Project Office developed 21 tools for the mission.

Designing and Building

Like many great inventions, it all starts with a sketch. Engineers figure out what steps need to be taken to accomplish the task, and imagine the necessary tools to get the job done.

From there, engineers develop a computer-aided design (CAD) model, and get to building a prototype. Tools will then undergo multiple iterations and testing with the AMS repair team and astronauts to get the design just right, until eventually, they are finalized, ready to undergo vibration and thermal vacuum testing to make sure they can withstand the harsh conditions of launch and use in the space environment. 

Hex Head Capture Tool Progression:

image

Hex Head Capture Tool Used in Space: 

image

Practice Makes Perfect

One of the reasons the AMS spacewalks have been four years in the making is because the complexity of the repairs required the astronauts to take extra time to practice. Over many months, astronauts tasked with performing the spacewalks practiced the AMS repair procedures in numerous ways to make sure they were ready for action. They practiced in:  

Virtual reality simulations:

image

The Neutral Buoyancy Laboratory:

image

The Active Response Gravity Offload System (ARGOS):

image

Astronauts use this testing to develop and practice procedures in space-like conditions, but also to figure out what works and doesn’t work, and what changes need to be made. A great example is a part of the repair that involves cutting and reconnecting fluid lines. When astronauts practiced cutting the fluid lines during testing here on Earth, they found it was difficult to identify which was the right one to cut based on sight alone. 

The tubes on the AMS essentially look the same.

image

After discussing the concern with the team monitoring the EVAs, the engineers once again got to work to fix the problem.

image

And thus, the Tube Cutting Guide tool was born! Necessity is the mother of invention and the team could not have anticipated the astronauts would need such a tool until they actually began practicing. The Tube Cutting Guide provides alignment guides, fiducials and visual access to enable astronauts to differentiate between the tubes. After each of eight tubes is cut, a newly designed protective numbered cap is installed to cover the sharp tubing.

image

Off to Space

image

With the tools and repair procedures tested and ready to go, they launched to the International Space Station earlier this year. Now they’re in the middle of the main event -- Luca and Drew completed the first spacewalk last Friday, taking things apart to access the interior of the AMS instrument. Currently, there are three other spacewalks scheduled over the course of a month. The next spacewalk will happen on Nov. 22 and will put the Tube Cutting Guide to use when astronauts reconnect the tubes to a new cooling system.

With the ingenuity of our tool designers and engineers, and our astronauts' vigorous practice, AMS will be in good hands.

image

Check out the full video for the first spacewalk. Below you can check out each of the tools above in action in space!

Debris Shield Worksite: 2:29:16 – Debris Shield Handling Aid 2:35:25 – Hex Head Capture Tool (first) 2:53:31 – #10 Allen Bit 2:54:59 – Capture Cages 3:16:35 – #10 Allen Bit (diagonal side) 3:20:58 – Socket Head Capture Tool 3:33:35 – Hex Head Capture Tool (last) 3:39:35 – Fastener Capture Block 3:40:55 – Debris Shield removal 3:46:46 – Debris Shield jettison

Handrail Installations: 4:00:53 – Diagonal Beam Handrail Install 4:26:09 – Nadir Vacuum Case Handrail Install 4:33:50 – Zenith Vacuum Case Handrail InstallVertical Support Beam (VSB)

Vertical Support Beam (VSB) Worksite: 5:04:21 – Zip Tie Cutter 5:15:27 – VSB Cover Handling Aid 5:18:05 – #10 Allen Bit 5:24:34 – Socket Head Capture Tool 5:41:54 – VSB Cover breaking 5:45:22 – VSB Cover jettison 5:58:20 – Top Spacer Tool & M4 Allen Bit 6:08:25 – Top Spacer removal 7:42:05 - Astronaut shoutout to the tools team


Tags
5 years ago
Not All Galaxies Are Lonely. Some Have Galaxy Squads. ⁣

Not all galaxies are lonely. Some have galaxy squads. ⁣

NGC 1706, captured in this image by our Hubble Space Telescope, belongs to something known as a galaxy group, which is just as the name suggests — a group of up to 50 galaxies which are gravitationally bound and relatively close to each other. ⁣

Our home galaxy, the Milky Way, has its own squad — known as the Local Group, which also contains the Andromeda galaxy, the Large and Small Magellanic clouds and the Triangulum galaxy.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

5 Space Software Codes We Can Use on Earth

We’ve made some amazingly advanced software for our space missions, from launching rockets to the International Space Station to landing rovers on Mars. But a lot of that software can be applied to other situations here on the ground. We’ve got hundreds of downloadable programs in the NASA Software Catalog available for public use—and they’re all free.

We’ve rounded up five interesting software programs to get your search started.

1. Take a walk on Mars from your living room

Want to walk around Mars from the comfort of your living room? OnSight can help with that. Our engineers and scientists created this mixed reality software to immerse themselves in a visualization of the terrain around the Curiosity rover, so users feel like they are really walking on the Red Planet. The software can be adapted to visualize other locations, which means it could also help us explore places on Earth, like caves and lava fields. No wonder it was awarded NASA’s 2018 Software of the Year! 

2. Enhancing images from space and the doctor’s office

image

It’s hard to take a perfect picture from space. That’s why our scientists created the Hierarchical Image Segmentation software program – to help us enhance and analyze images taken of Earth from space by the Landsat and Terra missions. But, that isn’t all it can do. Doctors have used the software to analyze medical images, such as X-rays, ultrasounds and mammography images, to reveal important details previously unseen by the human eye.

3. Video game tech helps our engineers build spaceflight hardware

image

Installing sensitive spaceflight hardware is hardly a time for fun and games. Except when it comes to the Distributed Observer Network, or DON 3.1. This software combines innovative NASA tools with commercial video game technology to train our employees for stressful tasks – like maneuvering important, delicate tools through tight spots when building instruments or spacecraft. DON can be used in many other industries, particularly for overcoming the challenges that face virtual teams collaborating on complex problems.

4. Software helps protect Earth from space junk

image

Those of us on the ground may imagine space as a peaceful place to float among the stars, but in reality, Earth’s atmosphere is filled with junk. This space debris can cause damage to spacecraft and satellites, including the International Space Station. That’s where the Orbital Debris Engineering Model software program comes in. Thanks to this NASA software, we can study the risks of debris impact to help us protect our orbiting equipment and – more importantly – our planet. Communication companies could use this software to prevent debris damage when launching satellites, saving them a lot of time and money.

5. From exploration missions to your office, this software keeps projects on track

image

Do you manage complex projects at work? There are a lot of steps and moving pieces in play when it comes to getting a spacecraft from the launchpad into space. Used during the space shuttle missions, the Schedule Test and Assessment Tool 5.0 add-on works with Microsoft Project to automate project data to help us stay on track. It’s one of the more popular programs in our software catalog because it provides quick, clear assessment info that can help with decision making.

These are just a few examples of the software NASA has free and available for the public. To browse the new 2019-2020 catalog online, visit https://software.nasa.gov/.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Happy Halloween From The Space Place!

In a dark conference room, a pumpkin gently landed on the Moon, its retrorockets smoldering, while across the room, a flying saucer pumpkin hovered above Area 51 as a pumpkin alien wreaked havoc.

Happy Halloween From The Space Place!

Suffice to say that when the scientists and engineers at our Jet Propulsion Laboratory in Pasadena, California, compete in a pumpkin-carving contest, the solar system's the limit. Now in its ninth year, the contest gives teams only one hour to carve (off the clock, on their lunch break), though they can prepare non-pumpkin materials — like backgrounds, sound effects and motorized parts — ahead of time. 

Enjoy! 

Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!
Happy Halloween From The Space Place!

Looking for more pumpkin fun? Check out the full gallery, here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Galactic Ghouls and Stellar Screams

A quiet, starry night sky might not seem like a very eerie spectacle, but space can be a creepy place! Monsters lurk in the shadowy depths of the universe, sometimes hidden in plain sight. Many of them are invisible to our eyes, so we have to use special telescopes to see them. Read on to discover some of these strange cosmic beasts, but beware — sometimes fact is scarier than fiction.

Monster Black Holes ⚫

image

You know those nightmares where no matter how fast you try to run you never seem to get anywhere? Black holes are a sinister possible version of that dream — especially because they’re real! If you get too close to a black hole, there is no possibility of escape.

Just last year our Fermi Gamma-ray Space Telescope traced an otherworldly ghost particle back to one of these monster black holes, providing additional insight into the many signals we’re picking up from some of the most feared creatures in the cosmic deep.

But it gets worse. Our Hubble Space Telescope revealed that these things are hidden in the hearts of nearly every galaxy in the universe. That means supermassive black holes lurk in the shadows of the night sky in every direction you look!

A Hazy Specter 👻

image

This fiendish specter lives in the center of the Milky Way, haunting our galaxy’s supermassive black hole. But it’s not as scary as it looks! Our SOFIA observatory captured streamlines tracing a magnetic field that appears to be luring most of the material quietly into orbit around the black hole. In other galaxies, magnetic fields seem to be feeding material into hungry black holes — beware! Magnetic fields might be the answer to why some black holes are starving while others are feasting.

Bats in the Belfry 🦇

image

The universe has bats in the attic! Hubble spotted the shadow of a giant cosmic bat in the Serpens Nebula. Newborn stars like the one at the center of the bat, called HBC 672, are surrounded by disks of material, which are hard to study directly. The shadows they cast, like the bat, can clue scientists in on things like the disk’s size and density. Our solar system formed from the same type of disk of material, but we can only see the end result of planet building here — we want to learn more about the process!

Jack-o-lantern Sun 🎃

image

A jack-o-lantern in space?! Our Solar Dynamics Observatory watches the Sun at all times, keeping a close eye on space weather. In October 2014, the observatory captured a chilling image of the Sun with a Halloweenish face!

Skull Comet 💀

image

On Halloween a few years ago, an eerie-looking object known as 2015 TB145 sped across the night sky. Scientists observing it with our Infrared Telescope Facility determined that it was most likely a dead comet. It’s important to study objects like comets and asteroids because they’re dangerous if they cross Earth’s path — just ask the dinosaurs!

Halloween Treat 🍬

image

Trick-or-treat! Add a piece of glowing cosmic candy to your Halloween haul, courtesy of Hubble! This image shows the Saturn Nebula, formed from the outer layers ejected by a dying star, destined to be recycled into later generations of stars and planets. Our Sun will experience a similar fate in around five billion years.

Witch’s Broom Nebula 🧹

image

Massive stars are in for a more fiery fate, as the Witch's Broom Nebula shows. Hubble’s close-up look reveals wisps of gas — shrapnel leftover from a supernova explosion. Astronomers believe that a couple of supernovae occur each century in galaxies like our own Milky Way.

Zombie Stars 🧟

image

Supernovae usually herald the death of a star, but on a few occasions astronomers have found “zombie stars” left behind after unusually weak supernovae. Our Nuclear Spectroscopic Telescope Array (NuSTAR) has even spotted a mysterious glow of high-energy X-rays that could be the “howls” of dead stars as they feed on their neighbors.

Intergalactic Ghost Towns 🏚️

image

The universe is brimming with galaxies, but it’s also speckled with some enormous empty pockets of space, too. These giant ghost towns, called voids, may be some of the largest things in the cosmos, and since the universe is expanding, galaxies are racing even farther away from each other all the time! Be grateful for your place in space — the shadowy patches of the universe are dreadful lonely scenes.

Mysterious Invisible Force 🕵️‍♀️

image

Some forces are a lot creepier than floorboards creaking or a door slamming shut unexpectedly when you’re home alone. Dark energy is a mysterious antigravity pressure that our Wide Field Infrared Survey Telescope (WFIRST) is going to help us understand. All we know so far is that it’s present everywhere in the cosmos (even in the room with you as you read this) and it controls the fate of the universe, but WFIRST will study hundreds of millions of galaxies to figure out just what dark energy is up to.

Want to learn some fun ways to celebrate Halloween in (NASA) style? Check out this link!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
O_o  When We Peer Deep Into Space, We Don't Expect To Find Something Staring Back At Us...

O_o  When we peer deep into space, we don't expect to find something staring back at us...

This galactic ghoul, captured by our Hubble Space Telescope, is actually a titanic head-on collision between two galaxies. Each "eye" is the bright core of a galaxy, one of which slammed into another. The outline of the face is a ring of young blue stars. Other clumps of new stars form a nose and mouth.

Although galaxy collisions are common most of them are not head-on smashups like this Arp-Madore system. Get spooked & find out what lies inside this ghostly apparition, here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

The Overview Effect

Observing Earth from space can alter an astronauts’ cosmic perspective, a mental shift known as the “Overview Effect.” First coined by space writer Frank White in 1987, the Overview Effect is described as a feeling of awe for our home planet and a sense of responsibility for taking care of it.

See Earth from the vantage point of our astronauts in these perspective-changing views:

Floating Free in Space

image

Astronaut Bruce McCandless II used his hands to control his movement above the Earth during the first-ever spacewalk that didn't use restrictive tethers and umbilicals. Fellow crew members aboard the space shuttle Challenger captured this image on Feb. 7, 1984, through windows on the flight deck.

Of his famous spacewalk, McCandless wrote in 2015: "My wife [Bernice] was at mission control, and there was quite a bit of apprehension. I wanted to say something similar to Neil [Armstrong] when he landed on the moon, so I said, 'It may have been a small step for Neil, but it’s a heck of a big leap for me.' That loosened the tension a bit."

Earth Reflections

image

Astronaut Tracy Caldwell Dyson looks through a window in the Cupola of the International Space Station (ISS). A blue and white part of Earth and the blackness of space are visible through the windows. The image was a self-portrait using natural light.

In a preflight interview for Expedition 23/24, Dyson said: “hands down, the best part about it is being able to look at that view every day and during the time frame we’ll be up there, hopefully, we’ll have a big bay window and much more opportunity to observe this beautiful planet.”

Taking in the View

image

As astronaut Nick Hague prepared to conclude his six-month stay aboard the ISS, he shared this photo saying: "Today is my last Monday living on this orbiting laboratory and I’m soaking up my final views. The @Space_Station is truly an engineering marvel. #MondayMotivation." 

He and Expedition 60 and Soyuz commander Alexey Ovchinin of the Russian space agency Roscosmos​ completed a 203-day mission, spanning 3,248 orbits of Earth, and a journey of 80.8 million miles.

Earthrise

image

On Dec. 24, 1968, Apollo 8 astronauts Frank Borman, Jim Lovell and Bill Anders became the first humans to witness the Earth rising above the Moon's surface. 

 Anders, photographing the Moon from the right-side window, caught sight of the view, and exclaimed: “Oh my God, look at that picture over there! There’s the Earth comin’ up. Wow, is that pretty!”

The Blue Marble

image

Besides Earthrise, the Blue Marble is probably the most famous image of Earth that NASA has produced. Taken by the Apollo 17 crew on their way to the Moon in 1972, the Blue Marble and other NASA imagery of Earth has been credited by some with helping to fuel the environmental movement.

For more information on the Overview Effect, check out this episode of Houston We Have a Podcast. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

SPACE: A Global Frontier

Space is a global frontier. That’s why we partner with nations all around the world to further the advancement of science and to push the boundaries of human exploration. With international collaboration, we have sent space telescopes to observe distant galaxies, established a sustainable, orbiting laboratory 254 miles above our planet’s surface and more! As we look forward to the next giant leaps in space exploration with our Artemis lunar exploration program, we will continue to go forth with international partnerships!

Teamwork makes the dream work. Here are a few of our notable collaborations:

Artemis Program

image

Our Artemis lunar exploration program will send the first woman and the next man to the Moon by 2024. Using innovative technologies and international partnerships, we will explore more of the lunar surface than ever before and establish sustainable missions by 2028.

During these missions, the Orion spacecraft will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability and provide safe re-entry from deep space return velocities. The European Service Module, provided by the European Space Agency, will serve as the spacecraft’s powerhouse and supply it with electricity, propulsion, thermal control, air and water in space.

image

The Gateway, a small spaceship that will orbit the Moon, will be a home base for astronauts to maintain frequent and sustainable crewed missions to the lunar surface. With the help of a coalition of nations, this new spaceship will be assembled in space and built within the next decade.

Gateway already has far-reaching international support, with 14 space agencies agreeing on its importance in expanding humanity's presence on the Moon, Mars and deeper into the solar system.

International Space Station

image

The International Space Station (ISS) is one of the most ambitious international collaborations ever attempted. Launched in 1998 and involving the U.S., Russia, Canada, Japan and the participating countries of the European Space Agency — the ISS has been the epitome of global cooperation for the benefit of humankind. The largest space station ever constructed, the orbital laboratory continues to bring together international flight crews, globally distributed launches, operations, training, engineering and the world’s scientific research community.

Hubble Space Telescope 

image

The Hubble Space Telescope, one of our greatest windows into worlds light-years away, was built with contributions from the European Space Agency (ESA).

image

ESA provided the original Faint Object Camera and solar panels, and continues to provide science operations support for the telescope. 

Deep Space Network

image

The Deep Space Network (DSN) is an international array of giant radio antennas that span the world, with stations in the United States, Australia and Spain. The three facilities are equidistant approximately one-third of the way around the world from one another – to permit constant communication with spacecraft as our planet rotates. The network supports interplanetary spacecraft missions and a few that orbit Earth. It also provides radar and radio astronomy observations that improve our understanding of the solar system and the larger universe!

Mars Missions 

Information gathered today by robots on Mars will help get humans to the Red Planet in the not-too-distant future. Many of our Martian rovers – both past, present and future – are the products of a coalition of science teams distributed around the globe. Here are a few notable ones:

Curiosity Mars Rover 

image

France: ChemCam, the rover’s laser instrument that can analyze rocks from more than 20 feet away

Russia: DAN, which looks for subsurface water and water locked in minerals

Spain: REMS, the rover’s weather station

InSight Mars Lander

image

France with contributions from Switzerland: SEIS, the first seismometer on the surface of another planet

Germany: HP3, the heatflow probe that will help us understand the interior structure of Mars

Spain: APSS, the lander’s weather station

Mars 2020 Rover

image

Norway: RIMFAX, a ground-penetrating radar

France: SuperCam, the laser instrument for remote science

Spain: MEDA, the rover’s weather station

Space-Analog Astronaut Training

We partner with space agencies around the globe on space-analog missions. Analog missions are field tests in locations that have physical similarities to the extreme space environments. They take astronauts to space-like environments to prepare as international teams for near-term and future exploration to asteroids, Mars and the Moon.

image

The European Space Agency hosts the Cooperative Adventure for Valuing and Exercising human behavior and performance Skills (CAVES) mission. The two week training prepares multicultural teams of astronauts to work safely and effectively in an environment where safety is critical. The mission is designed to foster skills such as communication, problem solving, decision-making and team dynamics.

image

We host our own analog mission, underwater! The NASA Extreme Environment Mission Operations (NEEMO) project sends international teams of astronauts, engineers and scientists to live in the world’s only undersea research station, Aquarius, for up to three weeks. Here, “aquanauts” as we call them, simulate living on a spacecraft and test spacewalk techniques for future space missions in hostile environments.

International Astronautical Congress 

So, whether we’re collaborating as a science team around the globe, or shoulder-to-shoulder on a spacewalk, we are committed to working together with international partners for the benefit of all humanity! 

If you’re interested in learning more about how the global space industry works together, check out our coverage of the 70th International Astronautical Congress (IAC) happening this week in Washington, D.C. IAC is a yearly gathering in which all space players meet to talk about the advancements and progress in exploration.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags