Pan, e outras luas como ela, têm um profundo impacto nos anéis de Saturno. Os efeitos podem variar, desde a criação de gaps, a geração de novos pequenos anéis, até o surgimento de ondas verticais acima e abaixo do plano dos anéis. Todos os esses efeitos, produzidos pela gravidade são vistos nessa imagem.
Pan, um satélite de Saturno com 28 km de diâmetro, observado no centro da imagem, mantém o chamado Encke Gap, na sua órbita, mas também ajuda a criar e a formar os estreitos anéis que aparecem no Encke Gap. Dois pequenos anéis apagados nessa imagem, podem ser vistos, abaixo e à direita de Pan.
Muitos satélites, incluindo Pan, criam ondas em pontos distantes nos anéis de Saturno, onde as partículas dos anéis e as luas têm órbitas em ressonância. Muitas dessas ondas são visíveis nessa imagem como agrupamentos estreitos de bandas mais escuras e mais escuras. Estudando essas ondas, podem fornecer informações sobre as condições locais dos anéis.
Essa bela imagem foi feita com a câmera da sonda Cassini apontada na direção do lado não iluminado dos anéis, a cerca de 22 graus abaixo do plano dos anéis. A imagem foi feita na luz visível com a câmera de ângulo estreito da Cassini, no dia 30 de Abril de 2016.
A imagem foi obtida a uma distância de cerca de 373000 quilômetros de Saturno, e com o conjunto Sol-Saturno-Cassini em fase com ângulo de 140 graus. A escala da imagem é de 2 quilômetros por pixel.
A missão Cassini é um projeto cooperativo da NASA, da ESA, e da Agência Espacial Italiana. O Laboratório de Propulsão a Jato, uma divisão do Instituto de Tecnologia da Califórnia, em Pasadena, gerencia a missão para o Science Mission Directorate da NASA em Washington. O módulo orbital e suas duas câmeras de bordo foram desenhadas, desenvolvidas e montadas no JPL. O centro de operações de imageamento fica baseado no Space Science Institute em Boulder, no Colorado.
Para mais informações sobre a missão da Cassini-Huygens, visite http://saturn.jpl.nasa.gov e http://www.nasa.gov/cassini. O site da equipe de imageamento da Cassini é http://ciclops.org.
Fonte:
http://www.nasa.gov/image-feature/jpl/pia20490/pandemonium
Qr�Q ��
Desde quando se lê o primeiro texto sobre buracos negros, se aprende que esses objetos possuem uma força gravitacional imensa, e que nem a luz consegue escapar dele, e se um objeto passar pelo horizonte de eventos, não tem mais volta, ele irá cair e desaparecer.
Mas será que existe mesmo um horizonte de eventos? O que nós lemos e aprendemos foi proposto pela Teoria Geral da Relatividade de Albert Einstein.
Será que ao invés de um buraco negro o que tem ali não é um objeto estranho supermassivo.
Diferente do caso do buraco negro onde existe uma singularidade, essa ideia modificada, diz que esse objeto teria uma superfície rígida, nesse caso um objeto, como uma estrela, ao passar próximo se chocaria com a superfície ao invés de ser engolida.
Um grupo de pesquisadores resolveu então testar qual das duas hipóteses é a mais correta para um buraco negro, e esse teste também funcionou como um grande teste, mais uma vez para a Teoria da Relatividade, pois provaria que existe um horizonte de eventos e que nenhum objeto realmente sobrevive a um buraco negro.
Os astrônomos pensaram o que um telescópio poderia ver caso um objeto sobrevivesse a um buraco negro.
Para fazer a busca eles escolheram buracos negros supermassivos no chamado universo próximo.
Então eles buscaram nos dados de arquivos do telescópio Pan-STARRS, um telescópio de 1.8 metros de diâmetro que pesquisa metade do céu do hemisfério norte, e ele escaneou a mesma área repetidamente num período de 3.5 anos buscando pelos chamados transientes.
Basicamente, coisas que brilham e depois apagam, e os pesquisadores buscavam por assinaturas da luz de uma estrela caindo num buraco negro ou se chocando com uma superfície.
Os astrônomos modelaram tudo isso e sabiam a taxa de estrelas que eles deveriam detectar nesse período de 3.5 anos.
E depois de vasculhar os dados do telescópio eles não descobriram absolutamente nada.
A conclusão, os buracos negros realmente possuem um horizonte de eventos e que o material realmente desaparece, como era realmente esperado.
Os astrônomos querem agora no futuro próximo utilizar o Large Synoptic Survey Telescope que como o Pan-STARRS irá pesquisar o céu repetidas vezes buscando por transientes, mas agora com um diâmetro de 8.4 metros.
Júpiter esse ano ainda irá nos revelar muitas novidades, com a sonda Juno que se encontra lá, pertinho dele.
Mas, todo o sistema de Júpiter intriga os astrônomos aqui na Terra também, e em todo o sistema, alguns satélites do gigante gasoso chamam mais a atenção do que outros.
O que dizer de Europa com seu provável oceano em subsuperície onde muitos esperam encontrar vida, e o que falar de Ganimedes, o maior satélite do Sistema Solar.
Mas além desses, outro pequeno satélite chama muito a atenção de todos, Io, um mundo vulcânico, castigado por estar muito próximo de Júpiter, mas que também pode revelar surpresas.
Um novo estudo mostrou que o satélite Io de Júpiter, tem uma fina atmosfera que colapsa, quando o satélite está na sombra de Júpiter, condensando como gelo, esse estudo conclui que os eclipses diários que acontecem em Júpiter possuem efeitos congelantes em seus satélites.
Esse estudo marcou a primeira vez que esse fenômeno pôde ser observado diretamente, melhorando assim o nosso entendimento sobre um dos objetos mais geologicamente ativos do nosso Sistema Solar.
O estudo foi feito usando o telescópio de 8 metros Gemini Norte, no Havaí, através de um instrumento chamado Texas Echelon Cross Echelle Spectrograph, ou TEXES. Esse instrumento mede a atmosfera usando a radiação térmica e não a luz do Sol, e o Gemini tem a sensibilidade suficiente para registrar a assinatura da atmosfera de Io em colapso.
As observações foram feitas em duas noites do ano de 2013, quando o satélite Io estava a cerca de 675 milhões de quilômetros da Terra, em ambas as ocasiões pôde-se observar Io movendo-se na sombra de Júpiter por um período de cerca de 40 minutos antes e depois do início do eclipse.
A fina atmosfera de Io, consiste de dióxido de enxofre (SO2) que é emitido pelos vulcões, quando Io entra na sombra de Júpiter, a atmosfera colapsa enquanto o SO2 congela na superfície como gelo, quando o satélite sai da sombra, o gelo de SO2 é aquecido e sublima.
Assim, além de apresentar uma atividade geológica intensa, Io apresenta também uma atividade atmosférica frenética, já que ela é constantemente destruída e reparada de acordo com a dança do satélite ao redor do planeta.
A cada dia que passa vamos conhecendo melhor a nossa vizinhança cósmica!!!
(via https://www.youtube.com/watch?v=Bv8V4GW7umk)
Lua e Terra fotografadas pela Apollo 17 em Dezembro de 1972.
What’s Up for May? Two huge solar system highlights: Mercury transits the sun and Mars is closer to Earth than it has been in 11 years.
On May 9, wake up early on the west coast or step out for coffee on the east coast to see our smallest planet cross the face of the sun. The transit will also be visible from most of South America, western Africa and western Europe.
A transit occurs when one astronomical body appears to move across the face of another as seen from Earth or from a spacecraft. But be safe! You’ll need to view the sun and Mercury through a solar filter when looking through a telescope or when projecting the image of the solar disk onto a safe surface. Look a little south of the sun’s Equator. It will take about 7 ½ hours for the tiny planet’s disk to cross the sun completely. Since Mercury is so tiny it will appear as a very small round speck, whether it’s seen through a telescope or projected through a solar filter. The next Mercury transit will be Nov. 11, 2019.
Two other May highlights involve Mars. On May 22 Mars opposition occurs. That’s when Mars, Earth and the sun all line up, with Earth directly in the middle.
Eight days later on May 30, Mars and Earth are nearest to each other in their orbits around the sun. Mars is over half a million miles closer to Earth at closest approach than at opposition. But you won’t see much change in the diameter and brightness between these two dates. As Mars comes closer to Earth in its orbit, it appears larger and larger and brighter and brighter.
During this time Mars rises after the sun sets. The best time to see Mars at its brightest is when it is highest in the sky, around midnight in May and a little earlier in June.
Through a telescope you can make out some of the dark features on the planet, some of the lighter features and sometimes polar ice and dust storm-obscured areas showing very little detail.
After close approach, Earth sweeps past Mars quickly. So the planet appears large and bright for only a couple weeks.
But don’t worry if you miss 2016’s close approach. 2018’s will be even better, as Mars’ close approach will be, well, even closer.
You can find out about our #JourneytoMars missions at mars.nasa.gov, and you can learn about all of our missions at http://www.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Dunas e cratera na porção oeste de Meroe Patera em Marte.
In astronomy, parallax is the difference in the apparent position of an object seen by observers in different places. Stellar parallax is used to measure the distance of stars using the motion of the Earth in its orbit. Created by the different orbital positions of Earth, the extremely small observed shift is largest at time intervals of about six months, when Earth arrives at exactly opposite sides of the Sun in its orbit, giving a baseline distance of about two astronomical units between observations. The parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit (AU).
Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for thousands of years. It was first observed by Giuseppe Calandrelli who reported parallax in α-Lyrae in his work “Osservazione e riflessione sulla parallasse annua dall’alfa della Lira”. Then in 1838 Friedrich Bessel made the first successful parallax measurement ever, for the star 61 Cygni, using a Fraunhofer heliometer at Königsberg Observatory.
Once a star’s parallax is known, its distance from Earth can be computed trigonometrically. But the more distant an object is, the smaller its parallax. Even with 21st-century techniques in astrometry, the limits of accurate measurement make distances farther away than about 100 parsecs (roughly 326 light years) too approximate to be useful when obtained by this technique. This limits the applicability of parallax as a measurement of distance to objects that are relatively close on a galactic scale. Other techniques, such as spectral red-shift, are required to measure the distance of more remote objects.
source
Berries - Vadim Sadovski
Essa imagem capturada pela Wide Field Camera 3, a WFC3 do Hubble, mostra a galáxia chamada UGC 6093. Como se pode ver facilmente, a UGC 6093 é conhecida como uma galáxia espiral barrada - ela tem belos braços que espiralam a partir de uma barra que corta o centro da galáxia. Ela é classificada como uma galáxia ativa, o que significa que ela abriga um núcleo ativo de galáxia, ou um AGN, uma região compacta no centro da galáxia onde o material está centro dragado em direção do buraco negro supermassivo central. À medida que esse buraco negro devora material, ele emite intensa radiação, fazendo com que a galáxia brilhe intensamente. Mas a UGC 6093 é mais exótica ainda. A galáxia age essencialmente como um gigantesco laser astronômico que espalha sua luz nas microondas, não na luz visível, esse tipo de objeto é chamada de megamaser, sendo maser o termo usado para um laser de microondas. Os megamasers como a UGC 6093, podem ser cerca de 100 milhões de vezes mais brilhantes do que os masers encontrados em galáxias como a Via Láctea. A WFC3 do Hubble, observa a luz sendo espalhada em uma grande variedade de comprimentos de ondas, desde o infravermelho próximo, passando pela parte visível, até o ultravioleta próximo. Ela tem dois canais que detectam e processam os tipos diferentes de luz, permitindo que os astrônomos estudem uma grande quantidade de fenômenos astrofísicos, por exemplo, o canal UV-visível pode estudar galáxias que estão passando pelo processo de formação de estrelas, enquanto que o canal do infravermelho próximo pode estudar a luz desviada para o vermelho de galáxias no universo distante. Essas imagens multi-espectrais feitas pelo Hubble são de suma importância para estudar as galáxias megamasers.
Star Trek debuted in September 1966 and in its various incarnations, the series has been an inspiration to many, even some of us at NASA. The series allowed its fans to explore “strange new worlds” and to dream of what could be right in their living rooms. To celebrate the show’s 50th anniversary, we’ve collected some Trek-themed photos featuring Star Trek cast members and NASA astronauts.
Serious Business
The STS-54 crew of the space shuttle Endeavour in their official “gag” photo are costumed as the bridge crew of the Enterprise as depicted in the movie “Star Trek II: The Wrath of Khan.” The photo was taken on the Star Trek Adventure set of the Universal Studios California theme park in Los Angeles, California, while the crew was on a west coast training and public relations tour during the Summer of 1992. From left to right:
Greg Harbaugh (Mission Specialist/Engineering Officer)
Mario "Spock” Runco Jr. (Mission Specialist/1st Officer/Science Officer)
John Casper (Commander/Captain)
Susan Helms (Mission Specialist/Communications Officer)
Don McMonagle (Pilot/Navigation-Helm Officer)
“I have been, and always shall be, your friend”
Astronaut John Creighton shows the on board Graphical Retrieval Information Display (GRID) computer, which displays a likeness of Mr. Spock aboard STS-051G, June 18, 1985.
“A Keyboard… How Quaint”
Actor James Doohan (who played engineering genius Montgomery Scott in Star Trek) sits in the commanders seat of the Full Fuselage Trainer while astronaut Mario Runco explains the control panel during a tour of Johnson Space Center on Jan. 18, 1991.
“You Wanted Excitement, How’s Your Adrenaline?”
Actress Nichelle Nichols (Uhura in Star Trek) toured Johnson Space Center in Houston on March 4, 1977, while Apollo 12 lunar module pilot and Skylab II commander Alan Bean showed her what it felt like inside the Lower Body Negative Pressure Device and showed her how the Shuttle Procedures Simulator operated.
Nichols paid us another visit in 2012 and 2015 with the Space Traveling Museum.
Infinite Diversity, Infinite Combinations
European Space Agency astronaut Samantha Cristoforetti gave the Vulcan salute aboard the International Space Station shortly after the passing of Leonard Nimoy on Feb. 28, 2015. She commented on Tweeter: “ ‘Of all the souls I have encountered.. his was the most human.’ Thx @TheRealNimoy for bringing Spock to life for us”
Live Long And Prosper
While visiting Johnson Space Center in Houston, TX, George Takei (Hikaru Sulu on the original series) had the chance to exchange Vulcan salutes with Robonaut on May 29, 2012.
“Let’s See What’s Out There”
Scott Bakula, who played Captain Jonathan Archer on Star Trek: Enterprise, stands with astronauts Terry Virts and Mike Fincke on set. The two astronauts made guest appearances on the series finale episode “These Are The Voyages …” March 2005.
Boldly Going For Real
Above is the crew of STS-134, the next to last shuttle mission, in their version of the 2009 Star Trek movie poster.
The crew of Expedition 21 aboard the International Space Station also made a Trek-themed poster in 2009, wearing uniforms from Star Trek: The Next Generation with the Enterprise NX-01 silhouette in the background.
Learn more about Star Trek and NASA.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com