nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Latest Posts by nasa - Page 2

1 year ago

5 Myths About Becoming an Astronaut

Editor’s Note: This post was updated on March 15, 2024, to reflect new URLs and updated qualifications for applicants.

Have you ever wondered if you have what it takes to become a NASA astronaut? The term “astronaut” derives from the Greek word meaning “star sailor.”

We’re looking for a new class of astronauts to join the NASA team, and if you’re thinking about applying, there are a few things you should know.

Here are a few myths about becoming an astronaut:

MYTH: All astronauts have piloting experience.

FACT: You don’t need to be a pilot to be an astronaut. Flying experience is not a requirement, but it could be beneficial to have.

image

MYTH: All astronauts have perfect vision.

FACT: It’s OK if you don’t have 20/20 vision. As of September 2007, corrective surgical procedures of the eye (PRK and LASIK), are now allowed, providing at least one year has passed since the date of the procedure with no permanent adverse aftereffects.

image

MYTH: All astronauts have advanced degrees, like a PhD.

FACT: While a master’s degree from an accredited university is typically necessary to become an astronaut, an exception exists if you have completed a medical degree or test pilot school.

image

MYTH: Astronauts are required to have military experience to be selected.

FACT: Military experience is not required to become an astronaut.

image

MYTH: You must be a certain age to be an astronaut. 

FACT: There are no age restrictions. Astronaut candidates selected in the past have ranged between the ages of 26 and 46, with the average age being 34.

image

OK, but what are the requirements?

image

Basic Qualification Requirements

Applicants must meet the following minimum requirements before submitting an application:

Be a U.S. citizen.

Have completed a master’s degree (or foreign equivalent) in an accredited college or university with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

The master’s degree requirement can also be met by having:

Completed at least two years (36 semester hours or 54 quarter hours) in an accredited PhD or related doctoral degree program (or foreign equivalent) with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

Completed a Doctor of Medicine, Doctor of Osteopathic Medicine, or related medical degree (or foreign equivalent) in an accredited college or university.

Completed or be currently enrolled in a Test Pilot School (TPS) program (nationally or internationally recognized) and will have completed this program by June 2025. (Must submit proof of completion or enrollment.)

If TPS is your only advanced technical degree, you must have also completed a bachelor’s degree or higher (or foreign equivalent) at an accredited college or university with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

Have at least three years of related professional experience obtained after degree completion (or 1,000 Pilot-in-Command hours with at least 850 of those hours in high-performance jet aircraft for pilots). For medical doctors, time in residency can count toward experience and must be completed by June 2025.

Be able to pass the NASA long-duration flight astronaut physical.

Applications for our next astronaut class are open through April 2! Learn more about our Astronaut Selection Program and check out current NASA astronaut Anne McClain’s advice in “An Astronaut’s Guide to Applying to Be an Astronaut.”

Make sure to follow us on Tumblr for your regular dose of space!

Keep reading

1 year ago
A lithograph of Girl Scout astronauts. Portraits of 33 women of various races and ethnicities curve around part of Earth (bottom left). On Earth are embossed words “doctors, educators, engineers, pilots, scientists.” At top left is the Moon, and at top right is the International Space Station. From left to right, bottom to top, the astronauts are Serena M. Auñón-Chancellor, Kayla Barron, Yvonne D. Cagle, Laurel B. Clark, Eileen M. Collins, Nancy J. Currie-Gregg, N. Jan Davis, Anna L. Fisher, Susan J. Helms, Joan E. Higginbotham, Kathryn P. Hire, Tamara E. Jernigan, Susan L. Kilrain, Christina H. Koch, Wendy B. Lawrence, Sandra H. Magnus, Nicole Aunapu Mann, Megan McArthur, Jessica U. Meir, Pamela A. Melroy, Dorothy M. Metcalf-Lindenburger, Barbara R. Morgan, Lisa M. Nowak, Loral O’Hara, Kathleen Rubins, M. Rhea Seddon, Heidemarie M. Stefanyshyn-Piper, Kathryn D. Sullivan, Kathryn C. Thornton, Janice E. Voss, Jessica Watkins, Mary Ellen Weber, and Sunita L. Williams.

It’s Girl Scout Day! March 12, 2024, is the 112th birthday of Girl Scouts in the United States, and to celebrate, we’re sharing a lithograph of the Girl Scout alumnae who became NASA astronauts.

Girl Scouts learn to work together, build community, embrace adventurousness and curiosity, and develop leadership skills—all of which come in handy as an astronaut. For example, former Scouts Christina Koch and Jessica Meir worked together to make history on Oct. 18, 2019, when they performed the first all-woman spacewalk.

Pam Melroy is one of only two women to command a space shuttle and became NASA’s deputy administrator on June 21, 2021.

Nicole Mann was the first Indigenous woman from NASA to go to space when she launched to the International Space Station on Oct. 5, 2022. Currently, Loral O’Hara is aboard the space station, conducting science experiments and research.

Participating in thoughtful activities in leadership and STEM in Girl Scouts has empowered and inspired generations of girls to explore space, and we can’t wait to meet the future generations who will venture to the Moon and beyond.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
UAE (United Arab Emirates) astronaut Mohammad AlMulla, an Arab and Emirati man, poses for a portrait at NASA's Johnson Space Center in Houston, Texas. Credit: NASA/Josh Valcarcel

Mohammad AlMulla

Mohammad AlMulla, born in Dubai, received his commercial pilot's license from Australia at the age of 19. AlMulla was a training lead with the Dubai Police before becoming an astronaut candidate for the United Arab Emirates. https://mbrsc.ae/team/mohammed_mulla/

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
UAE (United Arab Emirates) astronaut Nora AlMatrooshi, an Arab and Emirati woman, poses for a portrait at NASA's Johnson Space Center in Houston, Texas. She wears a black hijab and a blue jumpsuit with patches of her name, the National Space Programme, and the UAE flag. Credit: NASA/Josh Valcarcel

Nora AlMatrooshi

Nora AlMatrooshi, the first Emirati woman astronaut, worked as a piping engineer before becoming an astronaut candidate for the United Arab Emirates. https://mbrsc.ae/team/nora/

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
NASA astronaut Jessica Wittner, a white woman, poses for a portrait at NASA’s Johnson Space Center in Houston, Texas. Credit: NASA/Josh Valcarcel

Jessica Wittner

Jessica Wittner, a lieutenant commander in the U.S. Navy, hails from California. A National Outdoor Leadership School alum, Wittner enjoys riding motorcycles and off-roading. https://go.nasa.gov/49CxwUN

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
NASA astronaut Chris Williams poses for a portrait at NASA’s Johnson Space Center in Houston, Texas. He looks upward, off into the distance. Credit: NASA/Josh Valcarcel

Chris Williams

Born in New York City, Chris Williams considers Potomac, Maryland, to be his hometown. A private pilot and Eagle Scout, Williams is a board-certified medical physicist and holds a doctorate in physics from MIT. https://go.nasa.gov/49YJJmf

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
NASA astronaut Anil Menon, a Ukrainian and Indian American man, poses for a portrait at NASA’s Johnson Space Center in Houston, Texas. Credit: NASA/Josh Valcarcel

Anil Menon

Anil Menon was a first responder for earthquakes in Haiti and Nepal. Menon supported astronauts on the International Space Station as a NASA flight surgeon, later joining SpaceX as their first flight surgeon in 2018. https://go.nasa.gov/3SVVK4Y

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
NASA astronaut Jack Hathaway, a white man, poses for a portrait at NASA’s Johnson Space Center in Houston, Texas. Credit: NASA/Josh Valcarcel

Jack Hathaway

Jack Hathaway, a distinguished naval aviator, was born and raised in South Windsor, Connecticut. An Eagle Scout, Hathaway volunteers as an assistant scoutmaster for the Boy Scouts. https://go.nasa.gov/4bU8QbI

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
NASA astronaut Andre Douglas, a Black man, poses for a portrait at NASA’s Johnson Space Center in Houston, Texas. Credit: NASA/Josh Valcarcel

Andre Douglas

A Virginia native, Andre Douglas served in the U.S. Coast Guard as a naval architect and salvage engineer. Douglas later worked as an engineer for Johns Hopkins University Applied Physics Laboratory on NASA's DART mission to redirect an asteroid. https://go.nasa.gov/48FBlam

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
NASA astronaut Luke Delaney, a white man, poses for a portrait at NASA’s Johnson Space Center in Houston, Texas. His body is slightly turned as he looks ahead. Credit: NASA/Josh Valcarcel

Luke Delaney

Luke Delaney, born in Miami and a graduate of the University of North Florida, was a test pilot for the Marine Corps before applying to become a NASA astronaut. He loves nature and spending time outdoors with his family. https://go.nasa.gov/3uNL8xn

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
NASA astronaut Deniz Burnham, a white woman, poses for a portrait at NASA's Johnson Space Center in Houston, Texas. She looks directly into the camera as the light highlights her blonde hair. Credit: NASA/Josh Valcarcel

Deniz Burnham

A former NASA intern, Deniz Burnham started her career as an engineer on an oil rig in Prudhoe Bay, Alaska, and went on to lead operations on drilling rigs in Canada, Ohio, and Texas. https://go.nasa.gov/3wDpfBo

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
NASA astronaut Chris Birch, a white woman, poses for a portrait at NASA's Johnson Space Center in Houston, Texas. Her body is turned sideways as she looks into the camera. Credit: NASA/Josh Valcarcel

Chris Birch

After an academic career at U.C. Riverside and Caltech, Chris Birch became a track cyclist on the U.S. National Team. She was training for the 2020 Olympics when she was chosen as an astronaut candidate. https://go.nasa.gov/49WJKHj

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
NASA astronaut Marcos Berríos, a Latino man, poses for a portrait at NASA's Johnson Space Center in Houston, Texas. His blue jumpsuit has a NASA patch, a name patch, and an American flag patch. Credit: NASA/Josh Valcarcel

Marcos Berrios

Marcos Berrios is from Guaynabo, Puerto Rico, and received his Ph.D. in aeronautics and astronautics from Stanford. Berríos has logged over 1,400 hours of flight time in over 20 different aircraft. https://go.nasa.gov/49DEAAt

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
NASA astronaut Nichole Ayers, a white woman, poses for a portrait at NASA's Johnson Space Center in Houston, Texas. She looks directly into the camera. She is wearing a blue jumpsuit with an American flag patch on the left arm and a patch with her name on it on the chest. Credit: NASA/Josh Valcarcel

Nichole Ayers

Nichole Ayers was born in San Diego but considers Colorado her home. A major in the U.S. Air Force, Ayers led the first-ever all-woman F-22 formation in combat in 2019. https://go.nasa.gov/3IqAyzw

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
The latest astronaut candidate graduates, a group of men and women of different races and ethnicities, greet the audience (not pictured) at their graduation ceremony. The candidates all wear blue jumpsuits with patches on them. Behind them is a black and gold graphic of a star streaking upwards. The background has white dots on it that resemble distant stars. Credit: NASA

Our newest class of astronaut candidates graduated on March 5, 2024. This means they’re now eligible for spaceflight assignments to the International Space Station, the Moon, and beyond! In the next twelve posts, we’ll introduce these new astronauts.

Do you want to be a NASA astronaut? Applications are now open.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago

Save the Date: 2024 Total Solar Eclipse

On April 8, 2024, a total solar eclipse will travel through Mexico, cross the United States from Texas to Maine, and exit North America along Canada’s Atlantic coast. A total solar eclipse occurs when the Moon passes between the Sun and the Earth, completely blocking the face of the Sun. The sky will darken as if it were dawn or dusk.

Weather permitting, people throughout most of North and Central America, including all of the contiguous United States, will be able to view at least a partial solar eclipse. A partial solar eclipse is when the Moon only covers part of the Sun. People in Hawaii and parts of Alaska will also experience a partial solar eclipse. Click here to learn more about when and where the solar eclipse will be visible: go.nasa.gov/Eclipse2024Map

Not in the path of the eclipse? Join us online to watch the eclipse with NASA. Set a reminder to watch live: https://go.nasa.gov/3V2CQML

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago

Black Scientists and Engineers Past and Present Enable NASA Space Telescope

The Nancy Grace Roman Space Telescope is NASA’s next flagship astrophysics mission, set to launch by May 2027. We’re currently integrating parts of the spacecraft in the NASA Goddard Space Flight Center clean room.

Once Roman launches, it will allow astronomers to observe the universe like never before. In celebration of Black History Month, let’s get to know some Black scientists and engineers, past and present, whose contributions will allow Roman to make history.

Black woman sitting in front of a camera that is slightly off-frame. She is wearing a brown sweater with a white collared shirt underneath. There are images of Earth from space behind her. Credit: NASA

Dr. Beth Brown

The late Dr. Beth Brown worked at NASA Goddard as an astrophysicist. in 1998, Dr. Brown became the first Black American woman to earn a Ph.D. in astronomy at the University of Michigan. While at Goddard, Dr. Brown used data from two NASA X-ray missions – ROSAT (the ROentgen SATellite) and the Chandra X-ray Observatory – to study elliptical galaxies that she believed contained supermassive black holes.  

With Roman’s wide field of view and fast survey speeds, astronomers will be able to expand the search for black holes that wander the galaxy without anything nearby to clue us into their presence.

Black-and-white photograph of a Black man standing in front of a chalkboard. He is wearing a dark-colored blazer with a light-colored collared button-up underneath. Credit: courtesy of ​​Georgetown University Archives

Dr. Harvey Washington Banks 

In 1961, Dr. Harvey Washington Banks was the first Black American to graduate with a doctorate in astronomy. His research was on spectroscopy, the study of how light and matter interact, and his research helped advance our knowledge of the field. Roman will use spectroscopy to explore how dark energy is speeding up the universe's expansion.

A Black woman stands with her back to the camera and is looking over her shoulder. She is wearing a dark blue jacket that has a white circle outlined image of a plane and the word NASA underneath. She is standing in front of a giant metal circular ring. It sits inside of a large black square box. Credit: NASA/Sydney Rohde

NOTE - Sensitive technical details have been digitally obscured in this photograph. 

Sheri Thorn 

Aerospace engineer Sheri Thorn is ensuring Roman’s primary mirror will be protected from the Sun so we can capture the best images of deep space. Thorn works on the Deployable Aperture Cover, a large, soft shade known as a space blanket. It will be mounted to the top of the telescope in the stowed position and then deployed after launch. Thorn helped in the design phase and is now working on building the flight hardware before it goes to environmental testing and is integrated to the spacecraft.

A smiling Black woman with shoulder-length straight black hair, glasses, and a white lab coat sits at a blue desk, holding a green circuit board in each hand. She is in a laboratory, and shelves with computer monitors and wires sit behind and around her. A sheet of shiny silver metal stands behind her head, and bags of wires and parts are visible on the desk beside her. Credit: NASA/Katy Comber

Sanetra Bailey 

Roman will be orbiting a million miles away at the second Lagrange point, or L2. Staying updated on the telescope's status and health will be an integral part of keeping the mission running. Electronics engineer Sanetra Bailey is the person who is making sure that will happen. Bailey works on circuits that will act like the brains of the spacecraft, telling it how and where to move and relaying information about its status back down to Earth.  

 Learn more about Sanetra Bailey and her journey to NASA. 

A Black man in a clean room wearing a clean suit covering his whole body except his eyes, wearing blue gloves, and holding up a flight detector. Credit: NASA/ Chris Gunn

Dr. Gregory Mosby 

Roman’s field of view will be at least 100 times larger than the Hubble Space Telescope's, even though the primary mirrors are the same size. What gives Roman the larger field of view are its 18 detectors. Dr. Gregory Mosby is one of the detector scientists on the Roman mission who helped select the flight detectors that will be our “eyes” to the universe.

Dr. Beth Brown, Dr. Harvey Washington Banks, Sheri Thorn, Sanetra Bailey, and Dr. Greg Mosby are just some of the many Black scientists and engineers in astrophysics who have and continue to pave the way for others in the field. The Roman Space Telescope team promises to continue to highlight those who came before us and those who are here now to truly appreciate the amazing science to come. 

A simulated space image with the Roman Space Telescope at the center. It heads toward a purple-and-pink galaxy, and you can see down the barrel opening of the spacecraft. Credit: NASA

To stay up to date on the mission, check out our website and follow Roman on X and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
An aerial view of the Barents Sea, north of Norway and Russia, shows white, wispy cloud coverage over both land and ocean. Clouds are seen in the bottom left corner extending up towards the top left corner but dwindling as they rise. Clouds are also seen in the top right corner. A green colored land mass is seen along the bottom third of the image. In the dark blue ocean are vibrant swirls of teal and green phytoplankton blooms. Credit: NASA

Sharpening Our View of Climate Change with the Plankton, Aerosol, Cloud, ocean Ecosystem Satellite

As our planet warms, Earth’s ocean and atmosphere are changing.

Climate change has a lot of impact on the ocean, from sea level rise to marine heat waves to a loss of biodiversity. Meanwhile, greenhouse gases like carbon dioxide continue to warm our atmosphere.

NASA’s upcoming satellite, PACE, is soon to be on the case!

Set to launch on Feb. 6, 2024, the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will help us better understand the complex systems driving the global changes that come with a warming climate.

A global map centered on the Pacific Ocean. The map highlights the areas where ocean surface color changed. Change in color is represented by shades of green. The darkest green correlates to higher levels of change. Black dots on the map represent areas where chlorophyll levels also changed. Credit: NASA/Wanmei Liang; data from Cael, B. B., et al. (2023)

Earth’s ocean is becoming greener due to climate change. PACE will see the ocean in more hues than ever before.

While a single phytoplankton typically can’t be seen with the naked eye, communities of trillions of phytoplankton, called blooms, can be seen from space. Blooms often take on a greenish tinge due to the pigments that phytoplankton (similar to plants on land) use to make energy through photosynthesis.

In a 2023 study, scientists found that portions of the ocean had turned greener because there were more chlorophyll-carrying phytoplankton. PACE has a hyperspectral sensor, the Ocean Color Instrument (OCI), that will be able to discern subtle shifts in hue. This will allow scientists to monitor changes in phytoplankton communities and ocean health overall due to climate change.

Satellite image of a bright turquoise phytoplankton bloom in the Atlantic. The bloom is a large spiral shape on the right side of the image. Credit: USGS; NASA

Phytoplankton play a key role in helping the ocean absorb carbon from the atmosphere. PACE will identify different phytoplankton species from space.

With PACE, scientists will be able to tell what phytoplankton communities are present – from space! Before, this could only be done by analyzing a sample of seawater.

Telling “who’s who” in a phytoplankton bloom is key because different phytoplankton play vastly different roles in aquatic ecosystems. They can fuel the food chain and draw down carbon dioxide from the atmosphere to photosynthesize. Some phytoplankton populations capture carbon as they die and sink to the deep ocean; others release the gas back into the atmosphere as they decay near the surface.

Studying these teeny tiny critters from space will help scientists learn how and where phytoplankton are affected by climate change, and how changes in these communities may affect other creatures and ocean ecosystems.

Animation of aerosol model data around the world. Plumes of red, green, yellow, blue and pink swirl over the gray landmasses and blue ocean to show carbon, sulfate, dust, sea salt, and nitrate, respectively. Credit: NASA

Climate models are one of our most powerful tools to understand how Earth is changing. PACE data will improve the data these models rely on.

The PACE mission will offer important insights on airborne particles of sea salt, smoke, human-made pollutants, and dust – collectively called aerosols – by observing how they interact with light.

With two instruments called polarimeters, SPEXone and HARP2, PACE will allow scientists to measure the size, composition, and abundance of these microscopic particles in our atmosphere. This information is crucial to figuring out how climate and air quality are changing.

PACE data will help scientists answer key climate questions, like how aerosols affect cloud formation or how ice clouds and liquid clouds differ.

It will also enable scientists to examine one of the trickiest components of climate change to model: how clouds and aerosols interact. Once PACE is operational, scientists can replace the estimates currently used to fill data gaps in climate models with measurements from the new satellite.

Animation of the PACE satellite orbiting a gray globe. As the satellite orbits, colorful swaths are left in its path, indicating where the satellite has collected data. Credit: NASA

With a view of the whole planet every two days, PACE will track both microscopic organisms in the ocean and microscopic particles in the atmosphere. PACE’s unique view will help us learn more about the ways climate change is impacting our planet’s ocean and atmosphere.

Stay up to date on the NASA PACE blog, and make sure to follow us on Tumblr for your regular dose of sPACE!


Tags
1 year ago
: Data visualization of global temperature anomalies progressing from 1880 to 2023 mapped onto Earth. The map uses color to represent anomalies, ranging from blue for below average temperatures, white for temperatures at baseline, and yellows ranging through oranges and reds to represent higher and higher than average temperatures. At the beginning of the time series, the map is primarily blues and whites, with a few spots of yellow, indicating that temperatures overall are below the baseline. As time progresses, the colors shift and move, with less and less blue and white and more and more yellow, then orange, and red. By 2023, the map is mostly yellow with lots of orange and red. The Arctic region, Europe, Asia, North America, central South America, and the Antarctic peninsula are all dark red, indicating the highest temperature anomalies. Credit: NASA’s Scientific Visualization Studio

Six Answers to Questions You’re Too Embarrassed to Ask about the Hottest Year on Record

You may have seen the news that 2023 was the hottest year in NASA’s record, continuing a trend of warming global temperatures. But have you ever wondered what in the world that actually means and how we know?

We talked to some of our climate scientists to get clarity on what a temperature record is, what happened in 2023, and what we can expect to happen in the future… so you don’t have to!

Graph of carbon dioxide emissions from just before 1960 to present day. The X-axis shows years, with each decade listed. The Y-axis shows parts per million of carbon dioxide in the atmosphere. It starts at 300 and runs to 420 ppm. The line on the graph is a fairly straightforward upward trajectory, starting below 320 ppm in 1960 and running to over 420 ppm in 2023. The line on the graph does spike up and down within each year, showcasing the seasonal cycle of carbon dioxide uptake. However, the spikes are extremely minor compared to the upward trajectory. Credit: NOAA

1. Why was 2023 the warmest year on record?

The short answer: Human activities. The release of greenhouse gases like carbon dioxide and methane into the atmosphere trap more heat near Earth’s surface, raising global temperatures. This is responsible for the decades-long warming trend we’re living through.

But this year’s record wasn’t just because of human activities. The last few years, we’ve been experiencing the cooler phase of a natural pattern of Pacific Ocean temperatures called the El Niño Southern Oscillation (ENSO). This phase, known as La Niña, tends to cool temperatures slightly around the world. In mid-2023, we started to shift into the warmer phase, known as El Niño. The shift ENSO brought, combined with overall human-driven warming and other factors we’re continuing to study, pushed 2023 to a new record high temperature.

A climate spiral animation. The chart is circular with the year in the center and months of the year around the outside. There are three concentric circles labeled with measures from negative 2 degrees Fahrenheit to 2 degrees Fahrenheit, with the outer ring being the largest value. As the years count up, a line spirals through the months of the year and around the circle. The line starts with blue hues when temperatures are below average and changes to red and orange hues when temperatures are above average. As the spiral progresses, the lines form a deformed circle that becomes larger and more red, indicating Earth’s warming up to just above 2 degrees Fahrenheit above average. Credit: NASA’s Scientific Visualization Studio

2. So will every year be a record now?

Almost certainly not. Although the overall trend in annual temperatures is warmer, there’s some year-to-year variation, like ENSO we mentioned above.

Think about Texas and Minnesota. On the whole, Texas is warmer than Minnesota. But some days, stormy weather could bring cooler temperatures to Texas while Minnesota is suffering through a local heat wave. On those days, the weather in Minnesota could be warmer than the weather in Texas. That doesn’t mean Minnesota is warmer than Texas overall; we’re just experiencing a little short-term variation.

Something similar happens with global annual temperatures. The globe will naturally shift back to La Niña in the next few years, bringing a slight cooling effect. Because of human carbon emissions, current La Niña years will be warmer than La Niña years were in the past, but they’ll likely still be cooler than current El Niño years.

Visualization of Earth, rotating, speckled with tiny dots in various colors, representing surface temperature measurements taken over the course of a year. Most of the land surfaces are heavily covered in red dots, which represent land measurements. Yellow dots create streaks across the ocean, representing measurements taken by ships. Pink dots irregularly scattered across the ocean represent measurements from floating ocean buoys. Orange dots similar across the ocean represent measurements from moored buoys. Green dots, primarily along coasts, represent tidal gauge measurements. Finally, a handful of blue dots represent all other measurement locations. Credit: NASA’s Scientific Visualization Studio

3. What do we mean by “on record”?

Technically, NASA’s global temperature record starts in 1880. NASA didn’t exist back then, but temperature data were being collected by sailing ships, weather stations, and scientists in enough places around the world to reconstruct a global average temperature. We use those data and our modern techniques to calculate the average.

We start in 1880, because that’s when thermometers and other instruments became technologically advanced and widespread enough to reliably measure and calculate a global average. Today, we make those calculations based on millions of measurements taken from weather stations and Antarctic research stations on land, and ships and ocean buoys at sea. So, we can confidently say 2023 is the warmest year in the last century and a half.

A line graph of temperatures in the Northern Hemisphere Extratropics, Reconstructed Summer, which is May to August, Temperature. The Y-axis is Temperature Anomaly, running from -2 degrees Celsius to 2 degrees Celsius. The X-axis is Years, from 600 to 2023. A jagged black line runs just around the 0 degree Celsius line, with each year slightly higher or lower than the previous, but none jumping above or below 1 and -1 degrees, until just before the year 2000. Around the year 1900, the jagged line begins to climb upwards, reaching to above 1 degree Celsius. At around the time the temperature starts to climb, a red line, indicating NASA’s temperature record, maps very closely to the black line. At the very end, the red line jumps even higher than the black line, reaching almost to 2 degrees Celsius. Credit: NASA/Peter Jacobs using data from N-TREND / Rob Wilson at University of St. Andrews

However, we actually have a really good idea of what global climate looked like for tens of thousands of years before 1880, relying on other, indirect ways of measuring temperature. We can look at tree rings or cores drilled from ice sheets to reconstruct Earth’s more ancient climate. These measurements affirm that current warming on Earth is happening at an unprecedented speed.

4. Why does a space agency keep a record of Earth’s temperature?

It’s literally our job! When NASA was formed in 1958, our original charter called for “the expansion of human knowledge of phenomena in the atmosphere and space.” Our very first space missions uncovered surprises about Earth, and we’ve been using the vantage point of space to study our home planet ever since. Right now, we have a fleet of more than 20 spacecraft monitoring Earth and its systems.

Why we created our specific surface temperature record – known as GISTEMP – actually starts about 25 million miles away on the planet Venus. In the 1960s and 70s, researchers discovered that a thick atmosphere of clouds and carbon dioxide was responsible for Venus’ scorchingly hot temperatures.

The northern hemisphere of Venus, seen by the Magellan spacecraft. Venus is a burnt yellowish circle against the blackness of space. The planet’s surface has darker and yellow orange mottling and darker crater markings. Credit: NASA/JPL

Dr. James Hansen was a scientist at the Goddard Institute for Space Studies in New York, studying Venus. He realized that the greenhouse effect cooking Venus’ surface could happen on Earth, too, especially as human activities were pumping carbon dioxide into our atmosphere.

He started creating computer models to see what would happen to Earth’s climate as more carbon dioxide entered the atmosphere. As he did, he needed a way to check his models – a record of temperatures at Earth’s surface over time, to see if the planet was indeed warming along with increased atmospheric carbon. It was, and is, and NASA’s temperature record was born.

5. If last year was record hot, why wasn’t it very hot where I live?

The temperature record is a global average, so not everywhere on Earth experienced record heat. Local differences in weather patterns can influence individual locations to be hotter or colder than the globe overall, but when we average it out, 2023 was the hottest year.

Just because you didn’t feel record heat this year, doesn’t mean you didn’t experience the effects of a warming climate. 2023 saw a busy Atlantic hurricane season, low Arctic sea ice, raging wildfires in Canada, heat waves in the U.S. and Australia, and more.

Satellite image of smoke over the northeastern United States. The smoke is a light gray, cottony blanket creating an irregular shape over the center of the image. Behind it, the land surface is light browns and greens. Credit: NASA’s Earth Observatory

And these effects don’t stay in one place. For example, unusually hot and intense fires in Canada sent smoke swirling across the entire North American continent, triggering some of the worst air quality in decades in many American cities. Melting ice at Earth’s poles drives rising sea levels on coasts thousands of miles away.

Zoom in from a globe of Earth, showing warming temperatures in yellows, oranges, and reds. The zoom pushes in on the Arctic, which is primarily dark red, indicating the largest temperature anomalies throughout the region. Credit: NASA’s Scientific Visualization Studio/Katy Mersmann

6. Speaking of which, why is the Arctic – one of the coldest places on Earth – red on this temperature map?

Our global temperature record doesn’t actually track absolute temperatures. Instead, we track temperature anomalies, which are basically just deviations from the norm. Our baseline is an average of the temperatures from 1951-1980, and we compare how much Earth’s temperature has changed since then. 

Why focus on anomalies, rather than absolutes? Let’s say you want to track if apples these days are generally larger, smaller, or the same size as they were 20 years ago. In other words, you want to track the change over time.

Apples grown in Florida are generally larger than apples grown in Alaska. Like, in real life, how Floridian temperatures are generally much higher than Alaskan temperatures. So how do you track the change in apple sizes from apples grown all over the world while still accounting for their different baseline weights? 

By focusing on the difference within each area rather than the absolute weights. So in our map, the Arctic isn’t red because it’s hotter than Bermuda. It’s red because it’s gotten relatively much warmer than Bermuda has in the same time frame.

Want to learn more about climate change? Dig into the data at climate.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
A time-lapse clip of a satellite dish. As it goes from day to night, the satellite changes position. Credit: NASA

9 Out-of-This-World Moments for Space Communications & Navigation in 2023

How do astronauts and spacecraft communicate with Earth?

By using relay satellites and giant antennas around the globe! These tools are crucial to NASA’s space communications networks: the Near Space Network and the Deep Space Network, which bring back science and exploration data every day.

It’s been a great year for our space communications and navigation community, who work to maintain the networks and enhance NASA’s capabilities. Keep scrolling to learn more about our top nine moments.

At night, a SpaceX rocket launches to the International Space Station from a launchpad at NASA’s Kennedy Space Center in Florida. Credit: SpaceX

The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA's Kennedy Space Center in Florida on Thursday, Nov. 9, 2023, on the company's 29th commercial resupply services mission for the agency to the International Space Station. Liftoff was at 8:28 p.m. EST.

1. In November, we launched a laser communications payload, known as ILLUMA-T, to the International Space Station. Now, ILLUMA-T and the Laser Communications Relay Demonstration (LCRD) are exchanging data and officially complete NASA’s first two-way, end-to-end laser relay system. Laser communications can send more data at once than traditional radio wave systems – think upgrading from dial-up to fiber optic internet. ILLUMA-T and LCRD are chatting at 1.2 gigabits per second (Gbps). At that rate, you could download an average movie in under a minute.

NASA’s InSight lander sits covered in dust on Mars’ copper-brown surface in a “selfie” style image. Credit: NASA

NASA’s InSight lander captured this selfie on Mars on April 24, 2022, the 1,211th Martian day, or sol, of the mission.

2. Data analyzed in 2023 from NASA’s retired InSight Mars lander provided new details about how fast the Red Planet rotates and how much it wobbles. Scientists leveraged InSight’s advanced radio technology, upgrades to the Deep Space Network, and radio signals to determine that Mars’ spin rate is increasing, while making the most precise measurements ever of Mars’ rotation.

This image is an artist rendering. A dark blue and orange background containing the Pathfinder Technology Demonstrator-3 (PTD-3) hovering in low Earth orbit relaying a red laser communications link down to an image of the Jet Propulsion Laboratory’s optical ground station in Table Mountain California. This image of the ground station is located on top of a graphic of Earth. Credit: NASA/Dave Ryan

TBIRD is demonstrating a direct-to-Earth laser communications link from low Earth orbit to a ground station on Earth.

3. We set a new high record! The TeraByte InfraRed Delivery (TBIRD) payload – also demonstrating laser communications like ILLUMA-T and LCRD – downlinked 4.8 terabytes of data at 200 Gbps in a single 5-minute pass. This is the highest data rate ever achieved by laser communications technology. To put it in perspective a single terabyte is the equivalent of about 500 hours of high-definition video.

A giant 34-meter antenna, surrounded by rolling green hills, points towards a bright blue sky in Canberra, Australia. Credit: NASA

A 34-meter (112-foot) wide antenna at Canberra Deep Space Communications Complex near Canberra, Australia.

4. This year we celebrated the Deep Space Network’s 60th anniversary. This international array of antennas located at three complexes in California, Spain, and Australia allow us to communicate with spacecraft at the Moon and beyond. Learn more about the Deep Space Network’s legacy and future advancements.

An artist's rendering depicts two astronauts on the Moon's surface. In the left foreground, a gloved astronaut hand holds a navigation device. To the right, an astronaut kneels on the lunar surface. In the background, a spacecraft sits on the Moon’s surface, partially hidden by the navigation device in the foreground. A very pale blue dot, Earth, sits in the middle of a dark blue sky. Credit: NASA/Reese Patillo

An illustration of the LunaNet architecture. LunaNet will bring internet-like services to the Moon.

5. We are bringing humans to the Moon with Artemis missions. During expeditions, astronauts exploring the surface are going to need internet-like capabilities to talk to mission control, understand their routes, and ensure overall safety. The space comm and nav group is working with international partners and commercial companies to develop LunaNet, and in 2023, the team released Draft LunaNet Specification Version 5, furthering development.

This image is an artist rendering. NASA’s Laser Communications Relay Demonstration, or LCRD, is shown floating in front of a blue star-filled space background on the right side of the image, while the Earth is shown in the distance on the left. LCRD is surrounded by three spacecraft in space and two ground stations on Earth. Communications beams are connecting LCRD to the surrounding spacecraft and ground stations. Red beams, representing laser communications, connect LCRD to the Gateway, the International Space Station, and a laser communications ground station on Earth. Blue beams, representing radio frequency communications, connect LCRD to a science mission spacecraft, the International Space Station, and a radio frequency ground station on Earth. A small half-Moon is visible in the top left corner of the image. Credit: NASA

The High-Rate Delay Tolerant Networking node launched to the International Space Station in November and will act as a high-speed path for data.

6. In addition to laser communications, ILLUMA-T on the International Space Station is also demonstrating high-rate delay/disruption tolerant networking (HDTN). The networking node is showcasing a high-speed data path and a store-and-forward technique. HDTN ensures data reaches its final destination and isn’t lost on its path due to a disruption or delay, which are frequent in the space environment.

This image is an artist rendering. A dark blue background containing small bright blue stars fills the scene. The right half of the illustration shows planet Earth surrounded by four blue satellites. The Earth is covered with many hundreds of bright blue dots and connecting lines, symbolizing communications signals traveling across the Earth’s surface. The communications lines connect to the satellites located in near-Earth orbit. Credit: NASA

The Communications Services Project (CSP) partners with commercial industry to provide networking options for future spaceflight missions.

7. The space comm and nav team is embracing the growing aerospace industry by partnering with commercial companies to provide multiple networking options for science and exploration missions. Throughout 2023, our commercialization groups engaged with over 110 companies through events, one-on-one meetings, forums, conferences, and more. Over the next decade, NASA plans to transition near-Earth services from government assets to commercial infrastructure.

In the right foreground, five people huddle around a laptop computer wearing clear protective goggles and black t-shirts. A tall, black divider with a flight operations insignia stands in the background next to a large machine. Credit: NASA

Middle and high school students solve a coding experiment during NASA's Office of STEM Engagement App Development Challenge. 

8. Every year, NASA’s Office of STEM Engagement sponsors the App Development Challenge, wherein middle and high school students must solve a coding challenge. This year, student groups coded an application to visualize the Moon’s South Pole region and display information for navigating the Moon’s surface. Our space communications and navigation experts judged and interviewed students about their projects and the top teams visited NASA’s Johnson Space Center in Houston!

At night, a SpaceX rocket launches to the International Space Station from a launchpad at NASA’s Kennedy Space Center in Florida. Credit: SpaceX

A SpaceX Falcon 9 rocket soars upward after liftoff at the pad at 3:27 a.m. EDT on Saturday, Aug. 26, from Kennedy Space Center’s Launch Complex 39A in Florida carrying NASA’s SpaceX Crew-7 crew members to the International Space Station. Aboard SpaceX’s Dragon spacecraft are NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov.

9. The Near Space Network supported 19 launches in 2023! Launches included Commercial Crew flights to the International Space Station, science mission launches like XRISM and the SuperBIT balloon, and many more. Once in orbit, these satellites use Near Space Network antennas and relays to send their critical data to Earth. In 2023, the Near Space Network provided over 10 million minutes of communications support to missions in space.

Here’s to another year connecting Earth and space.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
Hello Again👋

Hello again👋

Welcome back to week number FIVE of Mindful Monday. It’s our FINAL week and we are here for a last little slice of quiet time🧘

We are back with some meditative space in space. Where else? This week, we delight in the wonders of the universe observed by the Hubble Space Telescope as you turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of our cosmic neighborhood 🌌

Mysterious and magical, and it’s here for you. You can even watch even more Space Out episodes on NASA+, a new no-cost, ad-free streaming service.

Why not give it a try? Because just a few minutes this Monday morning can make all the difference to your entire week, as @nasa helps to bring mindfulness from the stars and straight to you. 

🧘WATCH: Space Out with NASA: Wonders of the Universe. 12/25 at 1pm EST🧘

Space Out with NASA: Wonders of the Universe
YouTube
Delight in the wonders of the universe observed by the Hubble Space Telescope as you turn on, tune in, and space out to relaxing music and s
1 year ago
Hello Again👋

Hello again👋

Welcome back to week number four of Mindful Monday, 2023. It’s great to see all y’all 🧘

If you’re into the cosmos and mindfulness, we think you’re gonna LOVE this. This week, we invite you to bask in the glow of a Uranian sunset as you turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of our cosmic neighborhood. 🌄

Sounds good, right? Of course, it does. Mysterious, even. You can watch even more Space Out episodes on NASA+, a new no-cost, ad-free streaming service.

Why not give it a try? Because just a few minutes this Monday morning can make all the difference to your entire week, as @nasa helps to bring mindfulness from the stars and straight to you. 

🧘WATCH: Space Out with NASA: Uranian Sunset. 12/18 at 1pm EST🧘

Space Out with NASA: Uranian Sunset
YouTube
Bask in the glow of a Uranian sunset as you turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of
1 year ago
Many thousands of bright stars speckle the screen. The smallest ones are white pinpoints, strewn across the screen like spilled salt. Larger ones are yellow and bluish white with spiky outer edges like sea urchins. Credit: Matthew Penny (Louisiana State University)

A simulated image of NASA’s Nancy Grace Roman Space Telescope’s future observations toward the center of our galaxy, spanning less than 1 percent of the total area of Roman’s Galactic Bulge Time-Domain Survey. The simulated stars were drawn from the Besançon Galactic Model.

Exploring the Changing Universe with the Roman Space Telescope

The view from your backyard might paint the universe as an unchanging realm, where only twinkling stars and nearby objects, like satellites and meteors, stray from the apparent constancy. But stargazing through NASA’s upcoming Nancy Grace Roman Space Telescope will offer a front row seat to a dazzling display of cosmic fireworks sparkling across the sky.

Roman will view extremely faint infrared light, which has longer wavelengths than our eyes can see. Two of the mission’s core observing programs will monitor specific patches of the sky. Stitching the results together like stop-motion animation will create movies that reveal changing objects and fleeting events that would otherwise be hidden from our view.

Watch this video to learn about time-domain astronomy and how time will be a key element in NASA’s Nancy Grace Roman Space Telescope’s galactic bulge survey. Credit: NASA’s Goddard Space Flight Center

This type of science, called time-domain astronomy, is difficult for telescopes that have smaller views of space. Roman’s large field of view will help us see huge swaths of the universe. Instead of always looking at specific things and events astronomers have already identified, Roman will be able to repeatedly observe large areas of the sky to catch phenomena scientists can't predict. Then astronomers can find things no one knew were there!

One of Roman’s main surveys, the Galactic Bulge Time-Domain Survey, will monitor hundreds of millions of stars toward the center of our Milky Way galaxy. Astronomers will see many of the stars appear to flash or flicker over time.

This animation illustrates the concept of gravitational microlensing. When one star in the sky appears to pass nearly in front of another, the light rays of the background source star are bent due to the warped space-time around the foreground star. The closer star is then a virtual magnifying glass, amplifying the brightness of the background source star, so we refer to the foreground star as the lens star. If the lens star harbors a planetary system, then those planets can also act as lenses, each one producing a short change in the brightness of the source. Thus, we discover the presence of each exoplanet, and measure its mass and how far it is from its star. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab 

That can happen when something like a star or planet moves in front of a background star from our point of view. Because anything with mass warps the fabric of space-time, light from the distant star bends around the nearer object as it passes by. That makes the nearer object act as a natural magnifying glass, creating a temporary spike in the brightness of the background star’s light. That signal lets astronomers know there’s an intervening object, even if they can’t see it directly.

A galaxy with a large, warmly glowing circular center and several purplish spiral arms extending outward, wrapped around the center like a cinnamon roll. Stars speckle the entire galaxy, but they are most densely packed near the center where they're yellower. Toward the outer edges, the stars are whiter. Overlaid on top of the galaxy is a small pink outline of a spacecraft located a little more than halfway out toward the bottom edge of the galaxy. A reddish search beam extends across the galaxy through its center, about to the same point on the opposite side. Credit: NASA’s Goddard Space Flight Center/CI Lab

This artist’s concept shows the region of the Milky Way NASA’s Nancy Grace Roman Space Telescope’s Galactic Bulge Time-Domain Survey will cover – relatively uncharted territory when it comes to planet-finding. That’s important because the way planets form and evolve may be different depending on where in the galaxy they’re located. Our solar system is situated near the outskirts of the Milky Way, about halfway out on one of the galaxy’s spiral arms. A recent Kepler Space Telescope study showed that stars on the fringes of the Milky Way possess fewer of the most common planet types that have been detected so far. Roman will search in the opposite direction, toward the center of the galaxy, and could find differences in that galactic neighborhood, too.

Using this method, called microlensing, Roman will likely set a new record for the farthest-known exoplanet. That would offer a glimpse of a different galactic neighborhood that could be home to worlds quite unlike the more than 5,500 that are currently known. Roman’s microlensing observations will also find starless planets, black holes, neutron stars, and more!

This animation shows a planet crossing in front of, or transiting, its host star and the corresponding light curve astronomers would see. Using this technique, scientists anticipate NASA’s Nancy Grace Roman Space Telescope could find 100,000 new worlds. Credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR)

Stars Roman sees may also appear to flicker when a planet crosses in front of, or transits, its host star as it orbits. Roman could find 100,000 planets this way! Small icy objects that haunt the outskirts of our own solar system, known as Kuiper belt objects, may occasionally pass in front of faraway stars Roman sees, too. Astronomers will be able to see how much water the Kuiper belt objects have because the ice absorbs specific wavelengths of infrared light, providing a “fingerprint” of its presence. This will give us a window into our solar system’s early days.

A fiery orange globe appears at the left of a white disk of spinning material. As the disk spins, it draws material from the orange globe. Then suddenly the center of the white disk grows extremely bright as a sphere of white blossoms outward. The explosive white sphere then expands, quickly encompassing the whole screen in white criss-crossed with purplish gray filaments. Credit: NASA’s Goddard Space Flight Center/CI

This animation visualizes a type Ia supernova.

Roman’s High Latitude Time-Domain Survey will look beyond our galaxy to hunt for type Ia supernovas. These exploding stars originate from some binary star systems that contain at least one white dwarf – the small, hot core remnant of a Sun-like star. In some cases, the dwarf may siphon material from its companion. This triggers a runaway reaction that ultimately detonates the thief once it reaches a specific point where it has gained so much mass that it becomes unstable.

NASA’s upcoming Nancy Grace Roman Space Telescope will see thousands of exploding stars called supernovae across vast stretches of time and space. Using these observations, astronomers aim to shine a light on several cosmic mysteries, providing a window onto the universe’s distant past. Credit: NASA’s Goddard Space Flight Center

Since these rare explosions each peak at a similar, known intrinsic brightness, astronomers can use them to determine how far away they are by simply measuring how bright they appear. Astronomers will use Roman to study the light of these supernovas to find out how quickly they appear to be moving away from us.

By comparing how fast they’re receding at different distances, scientists can trace cosmic expansion over time. This will help us understand whether and how dark energy – the unexplained pressure thought to speed up the universe’s expansion – has changed throughout the history of the universe.

Left of center, two bright blue circular shapes appear to be joined toward the center of the frame. They are whitest on their outermost edges. Debris, also white and bright blue, emanates outward and extends all around the frame. The background is black. Credit: NASA, ESA, J. Olmsted (STScI)

NASA’s Nancy Grace Roman Space Telescope will survey the same areas of the sky every few days. Researchers will mine this data to identify kilonovas – explosions that happen when two neutron stars or a neutron star and a black hole collide and merge. When these collisions happen, a fraction of the resulting debris is ejected as jets, which move near the speed of light. The remaining debris produces hot, glowing, neutron-rich clouds that forge heavy elements, like gold and platinum. Roman’s extensive data will help astronomers better identify how often these events occur, how much energy they give off, and how near or far they are.

And since this survey will repeatedly observe the same large vista of space, scientists will also see sporadic events like neutron stars colliding and stars being swept into black holes. Roman could even find new types of objects and events that astronomers have never seen before!

Learn more about the exciting science Roman will investigate on X and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
In this long exposure, a meteor streaks across a dusty blue star-spangled sky. Along the horizon, the bright lights of the Baikonur Cosmodrome glow yellow, illuminating buildings and a launch pad. Credit: NASA/Joel Kowsky

A Geminid meteor streaks across the sky as the Soyuz TMA-19M spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome on Sunday, Dec. 13, 2015, in Kazakhstan. Credit: NASA/Joel Kowsky

Make a Wish! How to See the Geminid Meteor Shower

Every December, we have a chance to see one of our favorite meteor showers – the Geminids. To help you prepare, we’ve answered some of your most commonly asked questions. Happy viewing, stargazers!

23 radar images of near-Earth object 3200 Phaethon are shown in four rows against a black background. Text in the lower right corner reads, “3200 Phaethon, 75 m x 0.95 Hz, 17 Dec 2017, Arecibo/NASA/NSF.” Credit: Arecibo Observatory/NASA/NSF

These radar images of near-Earth object 3200 Phaethon were generated by astronomers at the National Science Foundation's Arecibo Observatory on Dec. 17, 2017. Observations of Phaethon were conducted at Arecibo from Dec. 15 through 19, 2017. At time of closest approach on Dec. 16 at 3 p.m. PST (6 p.m. EST, 2300 UTC), the asteroid was about 6.4 million miles (10.3 million kilometers) away, or about 27 times the distance from Earth to the Moon. Credit: Arecibo Observatory/NASA/NSF

What are the Geminids?

The Geminids are caused by debris from a celestial object known as 3200 Phaethon striking Earth’s atmosphere. Phaethon’s origin is the subject of some debate. Some astronomers consider it to be an extinct comet, based on observations showing some small amount of material leaving its surface. Others argue that it has to be an asteroid because of its orbit and its similarity to the main-belt asteroid Pallas.

An illustration of the night sky with the constellations Cancer and Gemini overlaid show the radiants of 388 meteors with speeds of 35 km/s, depicted by small bright yellow dots, observed by the NASA Fireball Network in December 2020. Credit: NASA

All meteors appear to come from the same place in the sky, which is called the radiant. The Geminids appear to radiate from a point in the constellation Gemini, hence the name “Geminids.” The graphic shows the radiants of 388 meteors with speeds of 35 km/s observed by the NASA Fireball Network in December 2020. All the radiants are in Gemini, which means they belong to the Geminid shower. Credit: NASA

Why are they called the Geminids?

All meteors associated with a shower have similar orbits, and they all appear to come from the same place in the sky, which is called the radiant. The Geminids appear to radiate from a point in the constellation Gemini, hence the name “Geminids.”

A Geminid meteor, streaking across the sky as a bright white line, is visible in a black and white image. Credit: NASA

A Geminid streaks across the sky in this photo from December 2019. Credit: NASA

When is the best time to view them?

The Geminid meteor shower is active for much of December, but the peak will occur during the night of Dec. 13 into the morning of Dec. 14, 2023. Meteor rates in rural areas can be upwards of one per minute this year with minimal moonlight to interfere.

What do I need to see them?

As with all meteor showers, all you need is a clear sky, darkness, a bit of patience, and perhaps warm outerwear and blankets for this one. You don’t need to look in any particular direction, as meteors can generally be seen all over the sky. If you want to take photographs, check out these helpful tips.

An infographic displaying the altitude range of the Geminid meteors. Data points are displayed as white and orange dots, with white dots marking “begin height” and orange dots marking “end height.” Text on the infographic notes: “Geminids start burning up 63 miles above your head. They very rarely make it to 25 miles altitude.” A note in the lower right corner says “2019 NASA meteor camera data (283 Geminids).” Credit: NASA

An infographic based on 2019’s meteor camera data for the Geminids. Credit: NASA

Do you have any advice to help me see the Geminids better?

Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible.

A Geminid meteor, streaking across the sky as a short bright white line, is visible within a circular field of view. Credit: NASA

A Geminid streaks across the sky in this photo from December 2011. Credit: NASA

What will the meteors look like?

According to Bill Cooke, lead for the Meteoroid Environment Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, “Most meteors appear to be colorless or white, however the Geminids appear with a greenish hue. They’re pretty meteors!” Depending on the meteor’s chemical composition, the meteor will emit different colors when burned in the Earth’s atmosphere. Oxygen, magnesium, and nickel usually produce green.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago

Send Your Name to Jupiter

You’re invited to sign your name to a poem written by the U.S. Poet Laureate, Ada Limón. The poem connects two water worlds — Earth, yearning to reach out and understand what makes a world habitable, and Europa, waiting with secrets yet to be explored.

The poem will be engraved on Europa Clipper, along with participants' names that will be physically etched onto microchips mounted on the spacecraft. Together, the poem and names will travel 1.8 billion miles to the Jupiter system.

A poster with a background illustration showing the planet Jupiter and the surface of its moon Europa. The text reads: Message In a Bottle – Send your name. Next to the text is an illustration of a paper scroll rolled up inside a glass bottle sealed with a cork. Image credit: NASA/JPL-Caltech

Signing up is easy! Just go to this site to sign your name to the poem and get on board. We also have a Spanish-language site where you can send your name en español: Envía tu nombre aquí.

The Europa Clipper launch window opens in October 2024, but don’t wait – everyone’s names need to be received by December 31 this year so they can be loaded onto the spacecraft in time. We hope you’ll be riding along with us! Follow the mission at europa.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
Hello There 👋

Hello there 👋

Welcome back to the third week of Mindful Mondays. It’s very good to see you 🧘

Here is another installment of mindfulness to get the first day of your week well underway, and underway well. Experience the phases of the Moon as you turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of our cosmic neighborhood… 🌌

Sounds good, right? Of course it does. Mysterious, even. You can watch even more Space Out episodes on NASA+, a new no-cost, ad-free streaming service.

Why not give it a try? There is nothing to lose, everything to gain. Because just a few minutes this Monday morning can make all the difference to your entire week, as @nasa helps to bring mindfulness from the stars and straight to you. 

🧘WATCH: Space Out with NASA: Moon Phase 12/11 at 1pm EST🧘

1 year ago
Chloe Mehring, a woman with shoulder length brown hair, stands for an official portrait in front of the United States (left) and NASA (right) flags. She wears a black blazer and a black top. Credit: NASA
Diane Dailey, a woman with long brown hair, stands for an official portrait in front of the United States (left) and NASA (right) flags. She wears a black blazer and a white top with lace detailing. Credit: NASA

And that’s a wrap! Thank you for all the great questions. We hope you learned a little bit about what it takes to work in mission control as a flight director.

If you’re hungry for more, you can read the latest installment of our First Woman graphic novel series, where fictional character Commander Callie Rodriguez embarks on the next phase of her trailblazing journey and leaves the Moon to take the helm at Mission Control.

Keep up with the flight directors, the Space Station, and the Artemis missions at the links below.

Flight directors: X

Artemis: Facebook: Facebook, Instagram, X

Space Station: Facebook, Instagram, X (@Space_Station), X( @ISS_Research)

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago

What's a Question you wish someone would ask?


Tags
1 year ago

What encouraging words would you say to girls and women with dreams and ambitions who live in oppressive environments?


Tags
1 year ago

What type of planning goes into ensuring a successful launch, and how easily is it decided?


Tags
Explore Tumblr Blog
Search Through Tumblr Tags