nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Latest Posts by nasa - Page 4

1 year ago

Don’t Say “Bye, Bye, Bye” To Your Vision: Solar Eclipse Safety Tips

On Oct. 14, 2023, many people across North, Central, and South America will have an opportunity to view a “ring of fire” eclipse – an annular solar eclipse – when the Moon passes between the Earth and Sun! During an annular eclipse, it is never safe to look directly at the Sun without specialized eye protection designed for solar viewing. To spread the word, *NSYNC's Lance Bass stopped by to share some tips on how to stay safe while viewing a solar eclipse.

Check out these detailed viewing maps to see if you will be able to see the entire or partial solar eclipse. If you are, make sure your solar viewing glasses have the ISO certification 12312-2. You can also check with local libraries or science museums to see if they have safe solar viewing glasses to hand out. You can also make a simple pinhole camera at home with some paper and aluminum foil: go.nasa.gov/pinholeprojector

Everyone online can watch the eclipse with NASA. Set a reminder to watch live: https://www.youtube.com/watch?v=LlY79zjud-Q

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
Space provides a dark backdrop for this image, with small twinkling stars dotting the background. At the center of the image is the artist’s illustration of the Psyche asteroid with deep craters and metal all around. The Psyche spacecraft is in the front, with the main body in the middle of large solar arrays on each side. Credit: NASA/JPL-Caltech/ASU

Let's Explore a Metal-Rich Asteroid 🤘

Between Mars and Jupiter, there lies a unique, metal-rich asteroid named Psyche. Psyche’s special because it looks like it is part or all of the metallic interior of a planetesimal—an early planetary building block of our solar system. For the first time, we have the chance to visit a planetary core and possibly learn more about the turbulent history that created terrestrial planets.

Here are six things to know about the mission that’s a journey into the past: Psyche.

Artist’s concept of the Psyche spacecraft orbiting the metal asteroid Psyche. At the center of the image is the spacecraft with large solar arrays on each side of the main body. At the bottom-right is the metal asteroid with peaks sticking out of the surface. Credit: NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin

1. Psyche could help us learn more about the origins of our solar system.

After studying data from Earth-based radar and optical telescopes, scientists believe that Psyche collided with other large bodies in space and lost its outer rocky shell. This leads scientists to think that Psyche could have a metal-rich interior, which is a building block of a rocky planet. Since we can’t pierce the core of rocky planets like Mercury, Venus, Mars, and our home planet, Earth, Psyche offers us a window into how other planets are formed.

ALT text: Artist’s concept of the asteroid Psyche. The darkness of space takes up the entire background with small twinkly stars. Two large craters are at the center of the asteroid. The asteroid is mostly silvery with a few spots of copper on the surface. The word "Illustration" is printed at the bottom to the right of the asteroid. Credit: NASA/JPL-Caltech/ASU/Peter Rubin

2. Psyche might be different than other objects in the solar system.

Rocks on Mars, Mercury, Venus, and Earth contain iron oxides. From afar, Psyche doesn’t seem to feature these chemical compounds, so it might have a different history of formation than other planets.

If the Psyche asteroid is leftover material from a planetary formation, scientists are excited to learn about the similarities and differences from other rocky planets. The asteroid might instead prove to be a never-before-seen solar system object. Either way, we’re prepared for the possibility of the unexpected!

Two engineers, John Goldsten (left) and Sam Fix (right), work on the Gamma Ray/Neutron Spectrometer instrument at the Johns Hopkins Applied Physics Laboratory. Credit: Johns Hopkins APL/Craig Weiman

3. Three science instruments and a gravity science investigation will be aboard the spacecraft.

The three instruments aboard will be a magnetometer, a gamma-ray and neutron spectrometer, and a multispectral imager. Here’s what each of them will do:

Magnetometer: Detect evidence of a magnetic field, which will tell us whether the asteroid formed from a planetary body

Gamma-ray and neutron spectrometer: Help us figure out what chemical elements Psyche is made of, and how it was formed

Multispectral imager: Gather and share information about the topography and mineral composition of Psyche

The gravity science investigation will allow scientists to determine the asteroid’s rotation, mass, and gravity field and to gain insight into the interior by analyzing the radio waves it communicates with. Then, scientists can measure how Psyche affects the spacecraft’s orbit.

A Hall-effect thruster emits a blue glow trailing behind the spacecraft. Credit: NASA/JPL-Caltech

4. The Psyche spacecraft will use a super-efficient propulsion system.

Psyche’s solar electric propulsion system harnesses energy from large solar arrays that convert sunlight into electricity, creating thrust. For the first time ever, we will be using Hall-effect thrusters in deep space.

Pictured in front of the spacecraft is Lindy Elkins-Tanton, being interviewed by a member of the media at NASA’s Jet Propulsion Laboratory. Credit: NASA/JPL-Caltech

5. This mission runs on collaboration.

To make this mission happen, we work together with universities, and industry and NASA to draw in resources and expertise.

NASA’s Jet Propulsion Laboratory manages the mission and is responsible for system engineering, integration, and mission operations, while NASA’s Kennedy Space Center’s Launch Services Program manages launch operations and procured the SpaceX Falcon Heavy rocket.

Working with Arizona State University (ASU) offers opportunities for students to train as future instrument or mission leads. Mission leader and Principal Investigator Lindy Elkins-Tanton is also based at ASU.

Finally, Maxar Technologies is a key commercial participant and delivered the main body of the spacecraft, as well as most of its engineering hardware systems.

Members of the Psyche team pose for a photo at NASA’s Jet Propulsion Laboratory. Credit: NASA/JPL-Caltech

6. You can be a part of the journey.

Everyone can find activities to get involved on the mission’s webpage. There's an annual internship to interpret the mission, capstone courses for undergraduate projects, and age-appropriate lessons, craft projects, and videos.

You can join us for a virtual launch experience, and, of course, you can watch the launch with us on Oct. 12, 2023, at 10:16 a.m. EDT!

For official news on the mission, follow us on social media and check out NASA’s and ASU’s Psyche websites.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
Team Airtek, a group of nine smiling Black HBCU students, stand in front of a television and banner. The group is made up of five female students and four male students. On the television behind them is the name of their project, AIRTEK, with a logo that is a heart with a stylized electrocardiogram readout across it. Credit: NASA

HBCU Students Make Moves with NASA Tech

In September 2023, students at HBCUs participated in a hackathon at the National HBCU Week Conference, where they used NASA’s technologies to create solutions to problems that affect Black communities. The winning team, Team Airtek, proposed a nano-sensor array for medical diagnoses that would give students on HBCU campuses a non-invasive, non-intensive way to test themselves for precursors for diseases and illnesses like diabetes and COVID.

The hackathon they participated in is a modified version of the full NASA Minority University Research and Education Project Innovation and Tech Transfer Idea Competition (MITTIC) that takes place each fall and spring semester at NASA’s Johnson Space Center in Houston.

No matter what you’re studying, you can join the MITTIC competition and come up with new and innovative tech to help your community and the world.

MITTIC could be the beginning of your career pathway: Teams can go on exclusive NASA tours and network with industry experts. Show off your entrepreneurial skills and your team could earn money—and bragging rights.

Don’t wait too long to apply or to share with someone who should apply! The deadline for proposals is Oct. 16, 2023. Apply here: https://microgravityuniversity.jsc.nasa.gov/nasamittic.


Tags
1 year ago
Line graph with monthly temperature anomalies from each year from 1880 to 2023 growing across the graph to create a stacked bell shape. The Y-axis is labeled negative 3 degrees Celsius to 3 degrees Celsius and the X-axis has each month from January to December. As time goes on, the curved lines seem to stack higher and higher, and the colors of the lines change from white and light blue to light red, and then dark red. Finally, the 2023 line stops at August, the latest month we have data for, and it’s visible that June, July, and August 2023 were all hotter than any previous respective month. Credit: NASA

Confirmed: Summer 2023 Hottest in NASA’s Record

All three months of summer 2023 broke records. July 2023 was the hottest month ever recorded, and the hottest July. June 2023 was the hottest June, and August 2023 was the hottest August.

NASA’s temperature record, GISTEMP, starts in 1880, when consistent, modern recordkeeping became possible. Our record uses millions of measurements of surface temperature from weather stations, ships and ocean buoys, and Antarctic research stations. Other agencies and organizations who keep similar global temperature records find the same pattern of long-term warming.

Global temperatures are rising from increased emissions of greenhouse gasses, like carbon dioxide and methane. Over the last 200 years, humans have raised atmospheric CO2 by nearly 50%, primarily through the burning of fossil fuels.

Drivers of climate change, both natural and human-caused, leave distinct fingerprints. Through observations and modeling, NASA researchers confirm that the current warming is the result of human activities, particularly increased greenhouse gas emissions.


Tags
1 year ago

Top Study Tips from NASA

Two female engineers wearing white lab coats and blue gloves work on metal machinery at a desk in a warehouse. Credit: NASA/Bridget Caswell

Study smarter this school year! We asked scientists, engineers, astronauts, and experts from across NASA about their favorite study tips – and they delivered. Here are a few of our favorites:

Two astronauts work on a task in zero gravity aboard the International Space Station. They high five each other. Credit: NASA

Study with friends

Find friends that are like-minded and work together to understand the material better. Trading ideas with a friend on how to tackle a problem can help you both strengthen your understanding.

NASA astronaut Megan McArthur reads a blue book while floating in the cupola observation module on the International Space Station. She is wearing a red shirt and gray pants. Behind her, Earth can be seen through the module windows. Credit: NASA/Megan McArthur

Create a study environment

Find a quiet space or put on headphones so you can focus. You might not be able to get to the International Space Station yet, but a library, a study room, or a spot outside can be a good place to study. If it’s noisy around you, try using headphones to block out distractions.

An astronaut floats upside down toward a water bubble aboard the International Space Station. His face is magnified and right side up in the liquid. Credit: NASA

Take breaks

Don’t burn yourself out! Take a break, go for a walk, get some water, and come back to it.

Looking for more study tips? Check out this video for all ten tips to start your school year off on the right foot!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
A scattering of red-orange and blue stars fill the frame of the black background in space. Interstellar gas and dust at the center-right of the image is covering the star cluster and altering the view to see more red wavelengths. Credit: NASA, ESA, ESA/Hubble, Roger Cohen (RU)

Pumpkin space latte, anyone? ☕

Hubble captured this festive array of stars, Terzan 12, found in the Milky Way about 15,000 light-years from Earth. The stars in this cluster are bound together by gravity in a sphere-like shape and are shrouded in gas and dust. As the starlight travels through that gas and dust to Earth, blue light scatters, leaving the redder wavelengths to come through.

Download the full-resolution image here.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
Guy Bluford, an African American man, floats near storage inside the Challenger spacecraft. He has one hand on a shiny gray bag with markings on it, and the other is nearly off-screen on the right. He wears a powder blue jumpsuit that has various zippers on it, as well as NASA, mission, and flag patches. He is looking directly at the camera while smiling. Credit: NASA

Guy Bluford Changed the Course of Space History

On Aug. 30, 1983, Guion Bluford, better known as Guy, became the first African American to fly to space. An accomplished jet pilot and aerospace engineer, Bluford became part of NASA’s 1978 astronaut class that included the first African American, the first Asian American, and the first women astronauts.

He and the other crew members of mission STS-8 were aboard the orbiter Challenger as it lifted off from Kennedy Space Center in Florida; it was the first nighttime launch and landing of the Space Shuttle program. While aboard, he and the other crew members deployed the Indian National Satellite (INSAT-1B), operated a Canadian-built robot arm, conducted experiments with live cell samples, and participated in studies measuring the effects of spaceflight on humans.

Guy Bluford chased his childhood dream of becoming an aerospace engineer, and in doing so, changed history and encouraged other Black astronauts to follow in his footsteps.

Make sure to follow us on Tumblr for your regular dose of space—and for milestones like this!


Tags
1 year ago
A group of people wearing white clean room suits with hoods and blue gloves work in a circle at the base of a tall, silver-and-gold structure laced with wiring. Behind them, on the right, is an eight-story white wall with blue stripes and a glass window. The left, far wall is covered in pale, square filters. Credit: NASA/Chris Gunn

The Nancy Grace Roman Space Telescope’s flight harness is transferred from the mock-up structure to the spacecraft flight structure.

Your Body is Wired Like a NASA Space Telescope. Sort Of.

If our Nancy Grace Roman Space Telescope were alive, its nervous system would be the intricate wiring, or “harness,” that helps different parts of the observatory communicate with one another. Just like the human body sends information through nerves to function, Roman will send commands through this special harness to help achieve its mission: answering longstanding questions about dark energy, dark matter, and exoplanets, among other mind-bending cosmic queries. 

Roman’s harness weighs around 1,000 pounds and is made of about 32,000 wires and 900 connectors. If those parts were laid out end-to-end, they would be 45 miles long from start to finish. Coincidentally, the human body’s nerves would span the same distance if lined up. That’s far enough to reach nearly three-fourths of the way to space, twice as far as a marathon, or eight times taller than Mount Everest! 

Seen from above, two individuals wearing white clean room suits with hoods and blue gloves work inside of a large, silvery metal structure with a hexagonal shape and a large cylindrical hole, covered in a diamond-patterned texture. Red and white wire bundles of cables drape across the top of the structure like strands of spaghetti. Credit: NASA/Chris Gunn 

An aerial view of the harness technicians working to secure Roman’s harness to the spacecraft flight structure.

Over a span of two years, 11 technicians spent time at the workbench and perched on ladders, cutting wire to length, carefully cleaning each component, and repeatedly connecting everything together.  

Space is usually freezing cold, but spacecraft that are in direct sunlight can get incredibly hot. Roman’s harness went through the Space Environment Simulator – a massive thermal vacuum chamber – to expose the components to the temperatures they’ll experience in space. Technicians “baked” vapors out of the harness to make sure they won’t cause problems later in orbit.  

Seen from below, two individuals wearing white clean room suits with hoods and blue gloves work inside of a silvery cylindrical metal structure. Seven bright lights mounted to the ceiling shine down onto them. Credit: NASA/Chris Gunn

Technicians work to secure Roman’s harness to the interior of the spacecraft flight structure. They are standing in the portion of the spacecraft bus where the propellant tanks will be mounted.  

The next step is for engineers to weave the harness through the flight structure in Goddard’s big clean room, a space almost perfectly free of dust and other particles. This process will be ongoing until most of the spacecraft components are assembled. The Roman Space Telescope is set to launch by May 2027. 

Learn more about the exciting science this mission will investigate on X and Facebook. 

Make sure to follow us on Tumblr for your regular dose of space! 


Tags
1 year ago
A large, silver and gold metallic structure is suspended from the ceiling in a spacious room. The structure is hollow with six sides, each covered with a diamond-like pattern. Three people in white bunny suits and blue gloves watch in the foreground. In the background, a large wall covered in small pinkish squares is at the left and another wall with a large viewing window is at the right. Credit: NASA/Jolearra Tshiteya

Roman's primary structure hangs from cables as it moves into the big clean room at NASA's Goddard Space Flight Center.

What Makes the Clean Room So Clean?

When you picture NASA’s most important creations, you probably think of a satellite, telescope, or maybe a rover. But what about the room they’re made in? Believe it or not, the room itself where these instruments are put together—a clean room—is pretty special. 

A clean room is a space that protects technology from contamination. This is especially important when sending very sensitive items into space that even small particles could interfere with.

There are two main categories of contamination that we have to keep away from our instruments. The first is particulate contamination, like dust. The second is molecular contamination, which is more like oil or grease. Both types affect a telescope’s image quality, as well as the time it takes to capture imagery. Having too many particles on our instruments is like looking through a dirty window. A clean room makes for clean science!

Two people in white “bunny” suits stand on a glossy, white floor. One holds a thin vacuum and the other holds a mop. On the floor behind them are some metallic structures and the wall behind them is covered in pale pink squares. Credit: NASA/Chris Gunn

Two technicians clean the floor of Goddard’s big clean room.

Our Goddard Space Flight Center in Greenbelt, Maryland has the largest clean room of its kind in the world. It’s as tall as an eight-story building and as wide as two basketball courts.

Goddard’s clean room has fewer than 3,000 micron-size particles per cubic meter of air. If you lined up all those tiny particles, they’d be no longer than a sesame seed. If those particles were the size of 16-inch (0.4-meter) inflatable beach balls, we’d find only 3,000 spread throughout the whole body of Mount Everest!

A person in a white “bunny” suit and blue gloves is sitting at a desk looking through the eyepiece of a microscope. Credit: NASA/Chris Gunn

A clean room technician observes a sample under a microscope.

The clean room keeps out particles larger than five microns across, just seven percent of the width of an average human hair. It does this via special filters that remove around 99.97% of particles 0.3 microns and larger from incoming air. Six fans the size of school buses spin to keep air flowing and pressurize the room. Since the pressure inside is higher, the clean air keeps unclean air out when doors open.

Close-up of a person wearing a white suit, mask, head covering, gloves, and glasses is hunched over a table in a dark room. They hold a small object in their right hand and a device with a grid of blue dots on it in their left hand. The device casts a blue glow on the sample they’re looking at, and on the person too. Credit: NASA/Chris Gunn

A technician analyzes a sample under ultraviolet light.

In addition, anyone who enters must wear a “bunny suit” to keep their body particles away from the machinery. A bunny suit covers most of the person inside. Sometimes scientists have trouble recognizing each other while in the suits, but they do get to know each other’s mannerisms very well.

A person in a white “bunny” suit, blue-green gloves, a face mask, and goggles stands in the center of a plain blue background. Each element is labeled as follows: gloves, full-body jumpsuit, sometimes glasses or goggles are worn, hairnet under head cover, mask, tape around wrists, and boot covers. At the bottom of the graphic, three items (perfume, lotion, and deodorant) are each inside a red circle with a line through it. Credit: NASA/Shireen Dooling

This illustration depicts the anatomy of a bunny suit, which covers clean room technicians from head to toe to protect sensitive technology.

The bunny suit is only the beginning: before putting it on, team members undergo a preparation routine involving a hairnet and an air shower. Fun fact – you’re not allowed to wear products like perfume, lotion, or deodorant. Even odors can transfer easily!

Two Black men, two white women, and two white men each stand in white lab coats and blue gloves. All are smiling. They are in a small room with silver metallic tables, one of which in the foreground reflects some of their likenesses. Credit: NASA/Chris Gunn

Six of Goddard’s clean room technicians (left to right: Daniel DaCosta, Jill Bender, Anne Martino, Leon Bailey, Frank D’Annunzio, and Josh Thomas).

It takes a lot of specialists to run Goddard’s clean room. There are 10 people on the Contamination Control Technician Team, 30 people on the Clean Room Engineering Team to cover all Goddard missions, and another 10 people on the Facilities Team to monitor the clean room itself. They check on its temperature, humidity, and particle counts.

A person wearing a white suit, face mask, head covering, and blue gloves with black tape wrapped around the wrists pours a clear liquid from one clear bottle into a larger clear beaker. Credit: NASA/Chris Gunn

A technician rinses critical hardware with isopropyl alcohol and separates the particulate and isopropyl alcohol to leave the particles on a membrane for microscopic analysis.

Besides the standard mopping and vacuuming, the team uses tools such as isopropyl alcohol, acetone, wipes, swabs, white light, and ultraviolet light. Plus, they have a particle monitor that uses a laser to measure air particle count and size.

The team keeping the clean room spotless plays an integral role in the success of NASA’s missions. So, the next time you have to clean your bedroom, consider yourself lucky that the stakes aren’t so high!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
In this multiwavelength image, the central object resembles a semi-transparent, spinning toy top in shades of purple and magenta against a black background. The top-like structure appears to be slightly falling toward the right side of the image. At its center is a bright spot. This is the pulsar that powers the nebula. A stream of material is spewing forth from the pulsar in a downward direction, constituting what would be the part of a top that touches a surface while it is spinning. Wispy purple light accents regions surrounding the object. This image combines data from NASA's Chandra, Hubble, and Spitzer telescopes. Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Navigating Deep Space by Starlight

On August 6, 1967, astrophysicist Jocelyn Bell Burnell noticed a blip in her radio telescope data. And then another. Eventually, Bell Burnell figured out that these blips, or pulses, were not from people or machines.

This photograph shows astrophysicist Jocelyn Bell Burnell smiling into a camera. She is wearing glasses, a pink collared shirt, and a black cardigan. She is holding a yellow pencil above a piece of paper with a red line across it. There is a tan lampshade and several books in the background. The image is watermarked “Copyright: Robin Scagell/Galaxy Picture Library.”

The blips were constant. There was something in space that was pulsing in a regular pattern, and Bell Burnell figured out that it was a pulsar: a rapidly spinning neutron star emitting beams of light. Neutron stars are superdense objects created when a massive star dies. Not only are they dense, but neutron stars can also spin really fast! Every star we observe spins, and due to a property called angular momentum, as a collapsing star gets smaller and denser, it spins faster. It’s like how ice skaters spin faster as they bring their arms closer to their bodies and make the space that they take up smaller.

This animation depicts a distant pulsar blinking amidst a dark sky speckled with colorful stars and other objects. The pulsar is at the center of the image, glowing purple, varying in brightness and intensity in a pulsating pattern. As the camera pulls back, we see more surrounding objects, but the pulsar continues to blink. The image is watermarked “Artist’s concept.” Credit: NASA’s Goddard Space Flight Center

The pulses of light coming from these whirling stars are like the beacons spinning at the tops of lighthouses that help sailors safely approach the shore. As the pulsar spins, beams of radio waves (and other types of light) are swept out into the universe with each turn. The light appears and disappears from our view each time the star rotates.

A small neutron star spins at the center of this animation. Two purple beams of light sweep around the star-filled sky, emanating from two spots on the surface of the neutron star, and one beam crosses the viewer’s line of sight with a bright flash. The image is watermarked “Artist’s concept.” Credit: NASA's Goddard Space Flight Center.

After decades of studying pulsars, astronomers wondered—could they serve as cosmic beacons to help future space explorers navigate the universe? To see if it could work, scientists needed to do some testing!

First, it was important to gather more data. NASA’s NICER, or Neutron star Interior Composition Explorer, is a telescope that was installed aboard the International Space Station in 2017. Its goal is to find out things about neutron stars like their sizes and densities, using an array of 56 special X-ray concentrators and sensitive detectors to capture and measure pulsars’ light.

This time-lapse of our Neutron star Interior Composition Explorer (NICER) shows how it scans the skies to study pulsars and other X-ray sources from its perch aboard the International Space Station. NICER is near the center of the image, a white box mounted on a platform with a shiny panel on one side and dozens of cylindrical mirrors on the opposite side. Around it are other silver and white instruments and scaffolding. NICER swivels and pans to track objects, and some other objects nearby move as well. The station’s giant solar panels twist and turn in the background. Movement in the sequence, which represents a little more than one 90-minute orbit, is sped up by 100 times. Credit: NASA.

But how can we use these X-ray pulses as navigational tools? Enter SEXTANT, or Station Explorer for X-ray Timing and Navigation Technology. If NICER was your phone, SEXTANT would be like an app on it.  

During the first few years of NICER’s observations, SEXTANT created an on-board navigation system using NICER’s pulsar data. It worked by measuring the consistent timing between each pulsar’s pulses to map a set of cosmic beacons.

This photo shows the NICER payload on the International Space Station. Against a black background, tall rectangular solar panels that appear as a golden mesh rise from the bottom of the photo, passing through its middle area. In front of that are a variety of gray and white shapes that make up instruments and the structure of the space station near NICER. Standing above from them, attached to a silver pole, is the rectangular box of the NICER telescope, which is pointing its concentrators up and to the right. Credit: NASA.

When calculating position or location, extremely accurate timekeeping is essential. We usually rely on atomic clocks, which use the predictable fluctuations of atoms to tick away the seconds. These atomic clocks can be located on the ground or in space, like the ones on GPS satellites. However, our GPS system only works on or close to Earth, and onboard atomic clocks can be expensive and heavy. Using pulsar observations instead could give us free and reliable “clocks” for navigation. During its experiment, SEXTANT was able to successfully determine the space station’s orbital position!

A photo of the International Space Station as seen from above. The left and right sides of the image are framed by the station's long, rectangular solar panels, with a complex array of modules and hardware in the middle. The background is taken up fully by the surface of the Earth; lakes, snow-capped mountains, and a large body of water are faintly visible beneath white clouds. Credit: NASA

We can calculate distances using the time taken for a signal to travel between two objects to determine a spacecraft’s approximate location relative to those objects. However, we would need to observe more pulsars to pinpoint a more exact location of a spacecraft. As SEXTANT gathered signals from multiple pulsars, it could more accurately derive its position in space.

This animation shows how triangulating the distances to multiple pulsars could help future space explorers determine their location. In the first sequence, the location of a spaceship is shown in a blue circle in the center of the image against a dark space background. Three pulsars, shown as spinning beams of light, appear around the location. They are circled in green and then connected with dotted lines. Text on screen reads “NICER data are also used in SEXTANT, an on-board demonstration of pulsar-based navigation.” The view switches to the inside of a futuristic spacecraft, looking through the windshield at the pulsars. An illuminated control panel glows in blues and purples. On-screen text reads “This GPS-like technology may revolutionize deep space navigation through the solar system and beyond.” Credit: NASA’s Johnson Space Center

So, imagine you are an astronaut on a lengthy journey to the outer solar system. You could use the technology developed by SEXTANT to help plot your course. Since pulsars are reliable and consistent in their spins, you wouldn’t need Wi-Fi or cell service to figure out where you were in relation to your destination. The pulsar-based navigation data could even help you figure out your ETA!

NASA’s Space Launch System (SLS) rocket carrying the Orion spacecraft launched on the Artemis I flight test. With Artemis I, NASA sets the stage for human exploration into deep space, where astronauts will build and begin testing the systems near the Moon needed for lunar surface missions and exploration to other destinations farther from Earth. This image shows a SLS rocket against a dark, evening sky and clouds of smoke coming out from the launch pad. This is all reflected on the water in the foreground of the photo. Credit: NASA/Bill Ingalls

None of these missions or experiments would be possible without Jocelyn Bell Burnell’s keen eye for an odd spot in her radio data decades ago, which set the stage for the idea to use spinning neutron stars as a celestial GPS. Her contribution to the field of astrophysics laid the groundwork for research benefitting the people of the future, who yearn to sail amongst the stars.  

Keep up with the latest NICER news by following NASA Universe on X and Facebook and check out the mission’s website. For more on space navigation, follow @NASASCaN on X or visit NASA’s Space Communications and Navigation website.  

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago

NASA Inspires Your Crafty Creations for World Embroidery Day

It’s amazing what you can do with a little needle and thread! For #WorldEmbroideryDay, we asked what NASA imagery inspired you. You responded with a variety of embroidered creations, highlighting our different areas of study.

Here’s what we found:

Webb’s Carina Nebula

hThis embroidered image shows the Carina Nebula captured by the James Webb Space Telescope. The image is framed in black. At the center a circular piece of art appears outlined in white. At the top of the circle, the thread is dark blue on the left. As you travel down white stars appear in lighter shades of blue. In the middle threads turn to dark black, red and orange to signify the nebula’s gas-like structure.

Wendy Edwards, a project coordinator with Earth Science Data Systems at NASA, created this embroidered piece inspired by Webb’s Carina Nebula image. Captured in infrared light, this image revealed for the first time previously invisible areas of star birth. Credit: Wendy Edwards, NASA. Pattern credit: Clare Bray, Climbing Goat Designs

Wendy Edwards, a project coordinator with Earth Science Data Systems at NASA, first learned cross stitch in middle school where she had to pick rotating electives and cross stitch/embroidery was one of the options.  “When I look up to the stars and think about how incredibly, incomprehensibly big it is out there in the universe, I’m reminded that the universe isn’t ‘out there’ at all. We’re in it,” she said. Her latest piece focused on Webb’s image release of the Carina Nebula. The image showcased the telescope’s ability to peer through cosmic dust, shedding new light on how stars form.

Ocean Color Imagery: Exploring the North Caspian Sea

This image shows an embroidery piece inspired by NASA imagery. The background is white. In the middle, a brown frame appears holding an illustration of the Caspian Sea. To the bottom left, blue, green and light green sea appears showing water moving. To the top right, ice gouges are designed in brown and white.

Danielle Currie of Satellite Stitches created a piece inspired by the Caspian Sea, taken by NASA’s ocean color satellites. Credit: Danielle Currie/Satellite Stitches

Danielle Currie is an environmental professional who resides in New Brunswick, Canada. She began embroidering at the beginning of the Covid-19 pandemic as a hobby to take her mind off the stress of the unknown. Danielle’s piece is titled “46.69, 50.43,” named after the coordinates of the area of the northern Caspian Sea captured by LandSat8 in 2019.

This is an image of the Caspian Sea. To the left, light green and dark green swirls appear in the water. To the right, ice gouges appear in white and light brown. Credit: NASA

An image of the Caspian Sea captured by Landsat 8 in 2019. Credit: NASA

Two Hubble Images of the Pillars of Creation, 1995 and 2015

This embroidery piece shows the Pillars of Creation inspired by the Hubble Telescope. The design is on a vintage embroidery frame (circa 1905)  with brown yarn on each side. In the middle a white tapestry shows the galaxy. There are three towering tendrils of cosmic dust and gas sitting at the center of the piece, colored in red and white. On the outside, space is blue with stars bursting in red colors.  Credit: Melissa Cole, Star Stuff Stitching

Melissa Cole of Star Stuff Stitching created an embroidery piece based on the Hubble image Pillars of Creation released in 1995. Credit: Melissa Cole, Star Stuff Stitching

Melissa Cole is an award-winning fiber artist from Philadelphia, PA, USA, inspired by the beauty and vastness of the universe. They began creating their own cross stitch patterns at 14, while living with their grandparents in rural Michigan, using colored pencils and graph paper.  The Pillars of Creation (Eagle Nebula, M16), released by the Hubble Telescope in 1995 when Melissa was just 11 years old, captured the imagination of a young person in a rural, religious setting, with limited access to science education.

This artistic piece shows two images of the Pillars of Creation captured by the Hubble Space Telescope. To the left, the circular art piece is on a brown background. The nebula is blue and navy with small white stitches showing stars. In the center, there are three pillars that appear colored in dark red, yellow and light green.  The pillars look like arches and spires rising out of a desert landscape, but are filled with semi-transparent gas and dust, and ever changing. To the right is a closeup of one of the pillars. The image is colored in red, yellow and brown thread, felt and wool. In the middle, blue wool appears showing space. A white star appears in the upper left. Credit: Lauren Wright Vartanian, Neurons and Nebulas

Lauren Wright Vartanian of the shop Neurons and Nebulas created this piece inspired by the Hubble Space Telescope’s 2015 25th anniversary re-capture of the Pillars of Creation. Credit:  Lauren Wright Vartanian, Neurons and Nebulas

Lauren Wright Vartanian of Guelph, Ontario Canada considers herself a huge space nerd. She’s a multidisciplinary artist who took up hand sewing after the birth of her daughter. She’s currently working on the illustrations for a science themed alphabet book, made entirely out of textile art. It is being published by Firefly Books and comes out in the fall of 2024. Lauren said she was enamored by the original Pillars image released by Hubble in 1995. When Hubble released a higher resolution capture in 2015, she fell in love even further! This is her tribute to those well-known images.

James Webb Telescope Captures Pillars of Creation

This rectangular piece shows another embroidered interpretation of the Pillars of Creation captured by the Webb Telescope last year. The background is blue and black with white stars scattered from top to bottom. In the middle, three pillars appear in colors of red and yellow. The pillars, which lean to the right, continue downward to the left of the art piece. Credit: Darci Lenker of Darci Lenker Art

Darci Lenker of Darci Lenker Art, created a rectangular version of Webb’s Pillars of Creation. Credit:  Darci Lenker of Darci Lenker Art

Darci Lenker of Norman, Oklahoma started embroidery in college more than 20 years ago, but mainly only used it as an embellishment for her other fiber works. In 2015, she started a daily embroidery project where she planned to do one one-inch circle of embroidery every day for a year.  She did a collection of miniature thread painted galaxies and nebulas for Science Museum Oklahoma in 2019. Lenker said she had previously embroidered the Hubble Telescope’s image of Pillars of Creation and was excited to see the new Webb Telescope image of the same thing. Lenker could not wait to stitch the same piece with bolder, more vivid colors.

Milky Way

This image shows an illustration of the Milky Way Galaxy. The round frame is black and circular. As you move inward, a white dotted pattern appears. Continuing to the center, a black background appears with white dots showing stars.  Five rings appear in a circular motion colored in threads of blue white and red. The center of the Milky Way Galaxy is white and oval shaped. Credit: Darci Lenker/Darci Lenker Art

Darci Lenker of Darci Lenker Art was inspired by NASA’s imaging of the Milky Way Galaxy. Credit: Darci Lenker

In this piece, Lenker became inspired by the Milky Way Galaxy, which is organized into spiral arms of giant stars that illuminate interstellar gas and dust. The Sun is in a finger called the Orion Spur.

The Cosmic Microwave Background

This image shows an embroidery design based on the cosmic microwave background, created by Jessica Campbell, who runs Astrostitches. Inside a tan wooden frame, a ccolorful oval is stitched onto a black background in shades of blue, green, yellow, and a little bit of red. Credit: Jessica Campbell/Astrostitches

This image shows an embroidery design based on the cosmic microwave background, created by Jessica Campbell, who runs Astrostitches. Inside a tan wooden frame, a colorful oval is stitched onto a black background in shades of blue, green, yellow, and a little bit of red. Credit: Jessica Campbell/ Astrostitches

Jessica Campbell obtained her PhD in astrophysics from the University of Toronto studying interstellar dust and magnetic fields in the Milky Way Galaxy. Jessica promptly taught herself how to cross-stitch in March 2020 and has since enjoyed turning astronomical observations into realistic cross-stitches. Her piece was inspired by the cosmic microwave background, which displays the oldest light in the universe.

This image shows the oldest light in the universe, the cosmic microwave background, captured by the Wilkinson Microwave Anisotropy Probe, also known as WMAP. At the center of the image is a colorful oval that is speckled with the seeds of galaxies, which appear as blobs of dark blue, light blue, green, yellow, and a little bit of red.

The full-sky image of the temperature fluctuations (shown as color differences) in the cosmic microwave background, made from nine years of WMAP observations. These are the seeds of galaxies, from a time when the universe was under 400,000 years old. Credit: NASA/WMAP Science Team

GISSTEMP: NASA’s Yearly Temperature Release

This image shows an embroidered art piece based on NASA’s yearly temperature release. To the bottom left, two fingers hold up the circular piece. A round wooden frame holds it in place. In the center, a map appears of the different content. It’s outlined in black. Most of the map is covered in yellow stitching to show a warming pattern. To the left and right, the stitches change to an orange color and are scattered on the map. In the top left- and right-hand corners, the color changes to a dark red to signify another temperature change.

Katy Mersmann, a NASA social media specialist, created this embroidered piece based on NASA’s Goddard Institute for Space Studies (GISS) global annual temperature record. Earth’s average surface temperature in 2020 tied with 2016 as the warmest year on record. Credit: Katy Mersmann, NASA

Katy Mersmann is a social media specialist at NASA’s Goddard Space Flight Center in Greenbelt, Md. She started embroidering when she was in graduate school. Many of her pieces are inspired by her work as a communicator. With climate data in particular, she was inspired by the researchers who are doing the work to understand how the planet is changing. The GISTEMP piece above is based on a data visualization of 2020 global temperature anomalies, still currently tied for the warmest year on record.

In addition to embroidery, NASA continues to inspire art in all forms. Check out other creative takes with Landsat Crafts and the James Webb Space telescope public art gallery.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago

Soaring into Aerospace: NASA Interns Take Flight at EAA AirVenture Oshkosh

Four people pose in front of a giant inflatable astronaut. Each of the four people are in polos with a NASA insignia on the upper left of their shirt. It’s sunny and clouds and a blue sky can be seen in the background. A large white tent with a NASA logo emblazoned above the entrance can also be seen in the background. Credit: NASA

Sustainable Aviation Ambassadors Alex Kehler, Bianca Legeza-Narvaez, Evan Gotchel, and Janki Patel pose in front of the NASA Pavilion at EAA AirVenture Oshkosh.

It’s that time of year again–EAA AirVenture Oshkosh is underway!

Boasting more than 650,000 visitors annually, EAA AirVenture Oshkosh, or “Oshkosh” for short, is an airshow and fly-in held by the Experimental Aircraft Association (EAA). Each year, flight enthusiasts and professionals from around the world converge on Oshkosh, Wisconsin, to engage with industry-leading organizations and businesses and celebrate past, present, and future innovation in aviation.

This year, four NASA interns with the Electrified Powertrain Flight Demonstration (EPFD) project count themselves among those 650,000+ visitors, having the unique opportunity to get firsthand experience with all things aerospace at Oshkosh.

Alex Kehler, Bianca Legeza-Narvaez, Evan Gotchel, and Janki Patel are Sustainable Aviation Ambassadors supporting the EPFD project, which conducts tests of hybrid electric aircraft that use electric aircraft propulsion technologies to enable a new generation of electric-powered aircraft. The focus of Alex, Bianca, Evan, and Janki’s internships cover everything from strategic communications to engineering, and they typically do their work using a laptop. But at Oshkosh, they have a special, more hands-on task: data collection.

“At Oshkosh, I am doing some data collection to better estimate how we can be prepared in the future,” said Janki, an Aerospace Engineering major from the University of Michigan. “Coming to Oshkosh has been an amazing experience… I can walk around and see people passionate about the work they do.”

This image shows the inside of a large tent filled with people. There are three visible stations throughout the tent, which consist of tall pillars that are adorned with color-coded decorations for the theme of the station. Along two of the stations are two interactive visual displays, where visitors sit in chairs and, through the use of a controller, navigate a virtual game featuring NASA aircraft. Credit: NASA

The NASA Pavilion at EAA AirVenture Oshkosh is full of interactive exhibits and activities for visitors to engage with. NASA Interns Alex, Bianca, Evan, and Janki are collecting data in the pavilion to help improve future exhibits at Oshkosh.

In addition to gathering data to help inform future NASA exhibits and activities at Oshkosh, the interns also have the opportunity to engage with visitors and share their passion for aviation with other aero enthusiasts. For Evan, who is receiving his Master's in Aerospace Engineering from the Georgia Institute of Technology, “being able to be here and talk with people who are both young and old who are interested in what the future of flight could be has been so incredible.”

Four people pose in front of NASA’s Super Guppy, a large, specialized aircraft that is used to transport oversize cargo. Each of the four people are wearing a polo shirt with a NASA insignia on the upper left of their shirt. The group is smiling and laughing for the photo. The Super Guppy is shiny and has silver covering the top half of the aircraft, white on the bottom half of the aircraft, and a large blue stripe running along the middle. Credit: NASA

Alex, Evan, Bianca, and Janki pose in front of NASA’s Super Guppy, a specialized aircraft used to transport oversized cargo.

At Oshkosh, one memory in particular stands out for Alex, Bianca, Evan, and Janki: seeing NASA’s famous Super Guppy in person. With a unique hinged nose and a cargo area that's 25 feet in diameter and 111 feet long, the Super Guppy can carry oversized cargo that is impossible to transport with other cargo aircraft. 

“We had a very lucky experience… We were able to not only see the Super Guppy, we got to get up close when it landed,” said Bianca, who is receiving her Master's in Business Administration with a specialization in Strategic Communications from Bowling Green State University. “From a learning experience, it gave me a way better basis on cargo aircraft and how they operate.” 

For Alex, who is receiving his Master's in Aeronautical Engineering from the Georgia Institute of Technology, it was exciting to see the Super Guppy’s older technology integrated with newer technologies up close. “There have been a lot of good memories, but I think the best one was the Super Guppy. It was cool to see this combination of 60’s and 70’s technology with this upgraded plane.”

Two people pose for a photo in a street. The person taking the photo is taking the image “selfie style,” so that their arms are visible in the frame. Both of the people are smiling. One is wearing a white polo and the other is wearing a red polo, and both shirts feature the NASA insignia. People can be seen milling about behind the two who are posing for the photo, and in the distance, small aircraft parked on grass can also be seen. Credit: NASA

Evan and Janki pose for a photo while walking around EAA AirVenture Oshkosh.

With Oshkosh coming to a close this Sunday, July 30, Alex, Bianca, Evan, and Janki also reflected on advice they have for future NASA interns on how they can get the most out of their internship: be curious and explore, connect with people who work in the field you’re interested in, and don’t be afraid to ask questions.

Alex advises potential NASA interns to “dream big and shoot for your goals, and divide that up into steps… In the end it will work out.” For Bianca, being open and exploring is key: “take opportunities, even if it’s the complete opposite thing that you were intending to do.”

Two people pose for a photo. The person taking the photo is taking the image “selfie style,” so one of their arms is visible in the photo, and they are wearing a blue polo with the NASA insignia featured on the upper left of their shirt. The person not taking the photo is holding an umbrella over them and is wearing a light blue shirt. Both of the people are smiling. In the background, there is grass, and in the distance, there are small aircraft parked on the grass. Credit: NASA

“Ask questions all the time,” said Evan. “Even outside the internship, always continue asking people about what they are knowledgeable on.” And Janki encourages future interns to “Follow your own path. Get the help of mentors, but still do your own thing.”

Visiting Oshkosh and want to see NASA science in action? Stop by the NASA Pavilion, located at Aviation Gateway Park, and see everything from interactive exhibits on sustainable aviation, Advanced Air Mobility, Quesst, and Artemis to STEM activities–and you may even meet NASA pilots, engineers, and astronauts! At Oshkosh, the sky’s the limit.

Interested in interning with NASA? Head over to NASA’s internship website to learn more about internship opportunities with NASA and find your place in (aero)space.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
The first anniversary image from NASA’s James Webb Space Telescope displays star birth like it’s never been seen before, full of detailed, impressionistic texture. The subject is the Rho Ophiuchi cloud complex, the closest star-forming region to Earth. It is a relatively small, quiet stellar nursery, but you’d never know it from Webb’s chaotic close-up. Jets bursting from young stars crisscross the image, impacting the surrounding interstellar gas and lighting up molecular hydrogen, shown in red. Some stars display the telltale shadow of a circumstellar disk, the makings of future planetary systems.

The young stars at the center of many of these disks are similar in mass to the Sun, or smaller. The heftiest in this image is the star S1, which appears amid a glowing cave it is carving out with its stellar winds in the lower half of the image. The lighter-colored gas surrounding S1 consists of polycyclic aromatic hydrocarbons, a family of carbon-based molecules that are among the most common compouds found in space. Download the full-resolution version from the Space Telescope Science Institute.

Credit: NASA, ESA, CSA, STScI, and K. Pontoppidan (STScI). Image Processing: A. Pagan (STScI)

The James Webb Space Telescope has just completed a successful first year of science. Let’s celebrate by seeing the birth of Sun-like stars in this brand-new image from the Webb telescope!

This is a small star-forming region in the Rho Ophiuchi cloud complex. At 390 light-years away, it's the closest star-forming region to Earth. There are around 50 young stars here, all of them similar in mass to the Sun, or smaller. The darkest areas are the densest, where thick dust cocoons still-forming protostars. Huge red bipolar jets of molecular hydrogen dominate the image, appearing horizontally across the upper third and vertically on the right. These occur when a star first bursts through its natal envelope of cosmic dust, shooting out a pair of opposing jets into space like a newborn first stretching her arms out into the world. In contrast, the star S1 has carved out a glowing cave of dust in the lower half of the image. It is the only star in the image that is significantly more massive than the Sun.

Thanks to Webb’s sensitive instruments, we get to witness moments like this at the beginning of a star’s life. One year in, Webb’s science mission is only just getting started. The second year of observations has already been selected, with plans to build on an exciting first year that exceeded expectations. Here’s to many more years of scientific discovery with Webb.

Make sure to follow us on Tumblr for your regular dose of space!

Credits: NASA, ESA, CSA, STScI, Klaus Pontoppidan (STScI)


Tags
1 year ago
Space Craft! Make NASA-Inspired Creations For World Embroidery Day

Space Craft! Make NASA-Inspired Creations for World Embroidery Day

It’s time to get crafty with some needle and thread. At NASA, we hope to inspire art of all kinds. To highlight #WorldEmbroideryDay on July 30, we want to know: does our imagery inspire you? Show us your art and we may feature it on social media.

How?

Search for a NASA image that inspires you. Here are a few places to get you started: Hubble, James Webb Space Telescope, Ocean Color, Landsat and Earth Observatory

Create. Over the years, we've seen a growing number of embroidered pieces that showcase our organization's research, especially with needlepoint.

Share your creation, along with the image it was inspired by, on social media using the hashtag #NASAEmbroidery. We will share selected pieces on July 30 for World Embroidery Day

Why?

Space Craft! Make NASA-Inspired Creations For World Embroidery Day

NASA imagery has many functions. From studying distant galaxies to tracking ocean health, our scientists use these images to not only monitor our home planet, but better understand life beyond our solar system.

Embroidery is an ancient craft that has experienced a revival over the years. It involves decorating fabric or other materials using a needle to apply thread or yarn.  Have you recently taken up embroidery? What images are you inspired by? We’d love to see it.

Image Resources for #NASAEmbroidery Inspiration

NASA Images 

Hubble Image Gallery

NASA’s Ocean Color Image Gallery

James Webb Space Telescope

Landsat Image Gallery

Create and Share Your #NASAEmbroidery

Take a picture of your piece and upload it to Twitter, Instagram, Tumblr or Facebook. Make sure you use the hashtag #NASAEmbroidery so we know that you are taking part in the event and make sure that your privacy permissions allow us to view your post.

If the piece catches our eye, we may share your work on NASA’s main social media accounts as well as theme-related ones. We may also feature your art in a NASA Flickr gallery and our Tumblr pages. We’ll contact you directly to grant us permission to feature your work. You can follow @NASA on Twitter, Instagram and Facebook for embroidery creations, which will be featured from July 30-Aug. 1

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
The background is mostly dark. At the center is a dark orange-brownish circle, surrounded by several blazing bright, thick, horizontal whiteish rings. This is Saturn and its rings. There are three tiny organ-like dots in the image—one to the upper left of the planet, one to the direct left of the planet, and the lower left of the planet. These are some of Saturn’s moons: Dione, Enceladus, and Tethys, respectively. There is a slightly darker tint at the northern and southern poles of the planet. The rings surrounding Saturn are mostly broad, with a few singular narrow gaps between the broader rings. The innermost, darkest band is the C ring. Next to that is the brighter, wider B ring. Traveling farther outward, a small dark gap, the Cassini division creates a space before another thicker ring called the A ring. Credits: NASA, ESA, CSA, STScI, M. Tiscareno (SETI Institute), M. Hedman (University of Idaho), M. El Moutamid (Cornell University), M. Showalter (SETI Institute), L. Fletcher (University of Leicester), H. Hammel (AURA); image processing by J. DePasquale (STScI)

Of course Saturn brought its ring light.

On June 25, 2023, our James Webb Space Telescope made its first near-infrared observations of Saturn. The planet itself appears extremely dark at this infrared wavelength, since methane gas absorbs almost all the sunlight falling on the atmosphere. The icy rings, however, stay relatively bright, leading to Saturn’s unusual appearance in this image.

This new image of Saturn clearly shows details within the planet’s ring system, several of the planet’s moons (Dione, Enceladus, and Tethys), and even Saturn’s atmosphere in surprising and unexpected detail.

These observations from Webb are just a hint at what this observatory will add to Saturn’s story in the coming years as the science team delves deep into the data to prepare peer-reviewed results.

Download the full-resolution image, both labeled and unlabeled, from the Space Telescope Science Institute.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
This image shows an image of Earth from space. It was taken by the crew of the final Apollo mission as the crew made its way to the Moon. The Earth is round. At the bottom, while clouds surround the continent of Antarctica. As you move up, the landmass appears in the land is brown in color. The ocean appears in dark blue colors. Credit: NASA

Ways NASA Studies the Ocean

We live on a water planet. The ocean covers a huge part of the Earth's surface – earning it the name Blue Marble.

The ocean is one of Earth’s largest ecosystems and helps moderate Earth’s climate. NASA scientists spend a lot of time studying the ocean and how it is changing as Earth’s climate changes.

In the last few years, NASA has launched an array of missions dedicated to studying this precious part of our planet, with more to come. For World Oceans Month, which starts in June, here are new ways NASA studies the ocean.

1. Seeing the colors of the ocean 🎨

A new NASA mission called PACE will see Earth’s oceans in more color than ever before. The color of the ocean is determined by the interaction of sunlight with substances or particles present in seawater.

Scheduled to launch in 2024, PACE will help scientists assess ocean health by measuring the distribution of phytoplankton, tiny plants and algae that sustain the marine food web. PACE will also continue measuring key atmospheric variables associated with air quality and Earth's climate.

This moving image shows the SWOT  satellite moving over a 75-mile swath of Earth. The background is black. The satellite moves from left to right in  the upper part of if the illustration. The satellite is a gold cylinder with blue solar panels and a T-shaped piece extending from it. As it moves in a straight line from to back it beams down pink and green light to show how it collects measurements. Below the beams, a rainbow light appears to show data collection. At the bottom of the moving image, a square image of Earth appears, circling. The square contains clouds and blue water. In the middle, a landmass is covered in dark green patches. Credit: NASA/JPL-Caltech

2. Surveying surface water around the globe 💧

The SWOT satellite, launched in late 2022, is studying Earth’s freshwater – from oceans and coasts to rivers, lakes and more – to create the first global survey of Earth’s surface water.

SWOT is able to measure the elevation of water, observing how major bodies of water are changing and detecting ocean features. The data SWOT collects will help scientists assess water resources, track regional sea level changes, monitor changing coastlines, and observe small ocean currents and eddies.

This illustration shows ocean currents around North and South America from space. The shape is a half-circle with a black background. To the left of the image, North and South American are a light brown color. North America is tilted to the left while South America is seen partially at the bottom center. From left to right, white circles cover earth showing the motion of a current. Under these white swirls, Earth’s Atlantic Ocean is signified in a light blue color. Credit: NASA

3. Setting sail to understand interactions between the ocean and atmosphere 🚢

With research aircraft, a research ship, and autonomous ocean instruments like gliders, NASA’s S-MODE mission is setting sail to study Earth’s oceans up close. Their goal? To understand ocean whirlpools, eddies and currents.

These swirling ocean features drive the give-and-take of nutrients and energy between the ocean and atmosphere and, ultimately, help shape Earth’s climate.

This image, taken from the HawkEye instrument, shows Baltimore and the Eastern Shore. The land is colored light brown and green. In the middle of the image, blue and green colored water shows the Atlantic Ocean to the right. The water comes in between the land, branching out to form the Chesapeake Bay itself. Credit: NASA; University of North Carolina, Wilmington; Cloudland Instruments; AAC-Clyde Space

4. Building ocean satellites the size of a shoebox 📦

NASA’s HawkEye instrument collects ocean color data and captures gorgeous images of Earth from its orbit just over 355 miles (575 kilometers) above Earth’s surface. It’s also aboard a tiny satellite measuring just 10cm x 10 cm x 30 cm – about the size of a shoebox!

​​This image shows dense blooming of phytoplankton. The plankton are represented in light and dark shades of green surrounding the island Svenskøya in the Svalbard archipelago located in the center of the image. The landmass is in the center of the image, colored in a light gray. Surrounding it is the plankton and blue water. Credit: NASA

5. Designing new missions to study Earth’s oceans! 🌊

NASA is currently designing a new space-based instrument called GLIMR that will help scientists observe and monitor oceans throughout the Gulf of Mexico, the southeastern U.S. coastline and the Amazon River plume that stretches to the Atlantic Ocean. GLIMR will also provide important information about oil spills, harmful algae blooms, water quality and more to local agencies.

This illustration shows animated movement of the Sentinel-6 Michael Freilich satellite. At the bottom of the image, the Earth appears moving in a circular pattern. The planet is depicted with brown and green landmasses with water surrounding it. Above Earth, the satellite appears moving from left to right. The satellite is shaped in a triangle, colored in purple and gold. It beams down circular beams which simulate data collection. Credit: NASA/JPL

6. Taking the ocean to new heights ⬆️

The U.S.-European Sentinel-6 Michael Freilich satellite is helping researchers measure the height of the ocean - a key component in understanding how Earth’s climate is changing.

This mission, which launched in 2020, has a serious job to do. It’s not only helping meteorologists improve their weather forecasts, but it’s helping researchers understand how climate change is changing Earth’s coastlines in real time.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Behold—the space station of the future! (…from 1973)

An artist's concept illustrating a cutaway view of the Skylab 1 Orbital Workshop (OWS). The OWS is a circular space with several vertical layers with floors that look like golden honeycombs. Different parts of the workshop are labeled, like the control and display panel where an astronaut in an orange jumpsuit works, film vaults, experiment support system, and the shower. Credit: NASA

This artist’s concept gives a cutaway view of the Skylab orbital workshop, which launched 50 years ago on May 14, 1973. Established in 1970, the Skylab Program's goals were to enrich our scientific knowledge of Earth, the sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms; to study the effects of the processing and manufacturing of materials in the absence of gravity; and to conduct Earth-resource observations.

Three crews visited Skylab and carried out 270 scientific and technical investigations in the fields of physics, astronomy, and biological sciences. They also proved that humans could live and work in outer space for extended periods of time, laying the groundwork for the International Space Station.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Caution: Universe Work Ahead 🚧

We only have one universe. That’s usually plenty – it’s pretty big after all! But there are some things scientists can’t do with our real universe that they can do if they build new ones using computers.

The universes they create aren’t real, but they’re important tools to help us understand the cosmos. Two teams of scientists recently created a couple of these simulations to help us learn how our Nancy Grace Roman Space Telescope sets out to unveil the universe’s distant past and give us a glimpse of possible futures.

Caution: you are now entering a cosmic construction zone (no hard hat required)!

A black square covered in thousands of tiny red dots and thousands more slightly larger, white and yellow fuzzy blobs. Each speck is a simulated galaxy. Credit: M. Troxel and Caltech-IPAC/R. Hurt

This simulated Roman deep field image, containing hundreds of thousands of galaxies, represents just 1.3 percent of the synthetic survey, which is itself just one percent of Roman's planned survey. The full simulation is available here. The galaxies are color coded – redder ones are farther away, and whiter ones are nearer. The simulation showcases Roman’s power to conduct large, deep surveys and study the universe statistically in ways that aren’t possible with current telescopes.

One Roman simulation is helping scientists plan how to study cosmic evolution by teaming up with other telescopes, like the Vera C. Rubin Observatory. It’s based on galaxy and dark matter models combined with real data from other telescopes. It envisions a big patch of the sky Roman will survey when it launches by 2027. Scientists are exploring the simulation to make observation plans so Roman will help us learn as much as possible. It’s a sneak peek at what we could figure out about how and why our universe has changed dramatically across cosmic epochs.

This video begins by showing the most distant galaxies in the simulated deep field image in red. As it zooms out, layers of nearer (yellow and white) galaxies are added to the frame. By studying different cosmic epochs, Roman will be able to trace the universe's expansion history, study how galaxies developed over time, and much more.

As part of the real future survey, Roman will study the structure and evolution of the universe, map dark matter – an invisible substance detectable only by seeing its gravitational effects on visible matter – and discern between the leading theories that attempt to explain why the expansion of the universe is speeding up. It will do it by traveling back in time…well, sort of.

Seeing into the past

Looking way out into space is kind of like using a time machine. That’s because the light emitted by distant galaxies takes longer to reach us than light from ones that are nearby. When we look at farther galaxies, we see the universe as it was when their light was emitted. That can help us see billions of years into the past. Comparing what the universe was like at different ages will help astronomers piece together the way it has transformed over time.

The animation starts with a deep field image of the universe, showing warm toned galaxies as small specks dusted on a black backdrop. Then the center is distorted as additional layers of galaxies are added. The center appears to bulge toward the viewer, and galaxies are enlarged and smeared into arcs. Credit: Caltech-IPAC/R. Hurt

This animation shows the type of science that astronomers will be able to do with future Roman deep field observations. The gravity of intervening galaxy clusters and dark matter can lens the light from farther objects, warping their appearance as shown in the animation. By studying the distorted light, astronomers can study elusive dark matter, which can only be measured indirectly through its gravitational effects on visible matter. As a bonus, this lensing also makes it easier to see the most distant galaxies whose light they magnify.

The simulation demonstrates how Roman will see even farther back in time thanks to natural magnifying glasses in space. Huge clusters of galaxies are so massive that they warp the fabric of space-time, kind of like how a bowling ball creates a well when placed on a trampoline. When light from more distant galaxies passes close to a galaxy cluster, it follows the curved space-time and bends around the cluster. That lenses the light, producing brighter, distorted images of the farther galaxies.

Roman will be sensitive enough to use this phenomenon to see how even small masses, like clumps of dark matter, warp the appearance of distant galaxies. That will help narrow down the candidates for what dark matter could be made of.

Three small squares filled with bluish dots emerge from a black screen. The black background is then filled with bluish dots too, and then the frame zooms out to see a much larger area of the dots. Credit: NASA's Goddard Space Flight Center and A. Yung

In this simulated view of the deep cosmos, each dot represents a galaxy. The three small squares show Hubble's field of view, and each reveals a different region of the synthetic universe. Roman will be able to quickly survey an area as large as the whole zoomed-out image, which will give us a glimpse of the universe’s largest structures.

Constructing the cosmos over billions of years

A separate simulation shows what Roman might expect to see across more than 10 billion years of cosmic history. It’s based on a galaxy formation model that represents our current understanding of how the universe works. That means that Roman can put that model to the test when it delivers real observations, since astronomers can compare what they expected to see with what’s really out there.

A cone shaped assortment of blue dots is on a grid. The tip of the cone is labeled "present day," and the other end is labeled "13.4 billion years ago." Three slices from the middle are pulled out and show the universe's structure developing over time. Credit: NASA's Goddard Space Flight Center and A. Yung

In this side view of the simulated universe, each dot represents a galaxy whose size and brightness corresponds to its mass. Slices from different epochs illustrate how Roman will be able to view the universe across cosmic history. Astronomers will use such observations to piece together how cosmic evolution led to the web-like structure we see today.

This simulation also shows how Roman will help us learn how extremely large structures in the cosmos were constructed over time. For hundreds of millions of years after the universe was born, it was filled with a sea of charged particles that was almost completely uniform. Today, billions of years later, there are galaxies and galaxy clusters glowing in clumps along invisible threads of dark matter that extend hundreds of millions of light-years. Vast “cosmic voids” are found in between all the shining strands.

Astronomers have connected some of the dots between the universe’s early days and today, but it’s been difficult to see the big picture. Roman’s broad view of space will help us quickly see the universe’s web-like structure for the first time. That’s something that would take Hubble or Webb decades to do! Scientists will also use Roman to view different slices of the universe and piece together all the snapshots in time. We’re looking forward to learning how the cosmos grew and developed to its present state and finding clues about its ultimate fate.

Thousands of small, light and deep blue dots cover a black background representing galaxies in a simulated universe. A tiny white square is labeled "Hubble." A set of 18 much larger squares, oriented in three curved rows, are labeled "Roman." Credit: NASA's Goddard Space Flight Center and A. Yung

This image, containing millions of simulated galaxies strewn across space and time, shows the areas Hubble (white) and Roman (yellow) can capture in a single snapshot. It would take Hubble about 85 years to map the entire region shown in the image at the same depth, but Roman could do it in just 63 days. Roman’s larger view and fast survey speeds will unveil the evolving universe in ways that have never been possible before.

Roman will explore the cosmos as no telescope ever has before, combining a panoramic view of the universe with a vantage point in space. Each picture it sends back will let us see areas that are at least a hundred times larger than our Hubble or James Webb space telescopes can see at one time. Astronomers will study them to learn more about how galaxies were constructed, dark matter, and much more.

The simulations are much more than just pretty pictures – they’re important stepping stones that forecast what we can expect to see with Roman. We’ve never had a view like Roman’s before, so having a preview helps make sure we can make the most of this incredible mission when it launches.

Learn more about the exciting science this mission will investigate on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Rockets, Racecars, and the Physics of Going Fast

The SLS rocket and Orion spacecraft launch off Launch Pad 39B at NASA’s Kennedy Space Center on November 16, 2022, beginning the Artemis I mission. The ignition from the rocket’s two boosters and four engines lights up the night sky. Smoke is seen building up from the ground as the rocket takes flight. Image credit:  NASA/Joel Kowsky

When our Space Launch System (SLS) rocket launches the Artemis missions to the Moon, it can have a top speed of more than six miles per second. Rockets and racecars are designed with speed in mind to accomplish their missions—but there’s more to speed than just engines and fuel. Learn more about the physics of going fast:

The SLS rocket and Orion spacecraft launch from the launch pad at NASA’s Kennedy Space Center on November 16, 2022, beginning the Artemis I mission. This is a close-up view of the solid rocket boosters and RS-25 engines ignited for flight. Image credit:  NASA/Joel Kowsky

Take a look under the hood, so to speak, of our SLS mega Moon rocket and you’ll find that each of its four RS-25 engines have high-pressure turbopumps that generate a combined 94,400 horsepower per engine. All that horsepower creates more than 2 million pounds of thrust to help launch our four Artemis astronauts inside the Orion spacecraft beyond Earth orbit and onward to the Moon. How does that horsepower compare to a racecar? World champion racecars can generate more than 1,000 horsepower as they speed around the track.

This GIF shows the four RS_25 engines on the SLS rocket igniting one by one as they prepare to launch Artemis I. A red glow comes from below the engines as they ignite. Image credit: NASA

As these vehicles start their engines, a series of special machinery is moving and grooving inside those engines. Turbo engines in racecars work at up to 15,000 rotations per minute, aka rpm. The turbopumps on the RS-25 engines rotate at a staggering 37,000 rpm. SLS’s RS-25 engines will burn for approximately eight minutes, while racecar engines generally run for 1 ½-3 hours during a race.

NASA engineers test a model of the Space Launch System rocket in a wind tunnel at NASA’s Langley Research Center. The image is taken from a test camera. Image credit: NASA

To use that power effectively, both rockets and racecars are designed to slice through the air as efficiently as possible.

While rockets want to eliminate as much drag as possible, racecars carefully use the air they’re slicing through to keep them pinned to the track and speed around corners faster. This phenomenon is called downforce.

This GIF shows a full-scale solid rocket booster being tested at Northrop Grumman’s facility in Utah. The booster, laying horizontal, ignites and fires. Image credit: Northrop Grumman

Steering these mighty machines is a delicate process that involves complex mechanics.

Most racecars use a rack-and-pinion system to convert the turn of a steering wheel to precisely point the front tires in the right direction. While SLS doesn’t have a steering wheel, its powerful engines and solid rocket boosters do have nozzles that gimbal, or move, to better direct the force of the thrust during launch and flight.

Members of the Artemis I launch control team monitor data at their consoles inside the Launch Control Center at NASA’s Kennedy Space Center during the first launch attempt countdown on August 29. Image credit: NASA/Kim Shiflett

Racecar drivers and astronauts are laser focused, keeping their sights set on the destination. Pit crews and launch control teams both analyze data from numerous sensors and computers to guide them to the finish line. In the case of our mighty SLS rocket, its 212-foot-tall core stage has nearly 1,000 sensors to help fly, track, and guide the rocket on the right trajectory and at the right speed. That same data is relayed to launch teams on the ground in real time. Like SLS, world-champion racecars use hundreds of sensors to help drivers and teams manage the race and perform at peak levels.

Rockets, Racecars, And The Physics Of Going Fast

Knowing how to best use, manage, and battle the physics of going fast, is critical in that final lap. You can learn more about rockets and racecars here.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Celebrate Earth Day with NASA

In the lower portion of the photo, the gray uneven cratered surface of the Moon runs diagonally descending from right to left. In the center-right of the photo, the half-illuminated Earth shines bright blue, and partially visible land hides behind swirling white clouds. Credit: NASA

"We came all this way to explore the Moon, and the most important thing is that we discovered the Earth." - Apollo 8 astronaut Bill Anders

On Dec. 24, 1968, Anders snapped this iconic photo of "Earthrise" during the historic Apollo 8 mission. As he and fellow astronauts Frank Borman and Jim Lovell became the first humans to orbit the Moon, they witnessed Earth rising over the Moon's horizon. The image helped spark the first #EarthDay on April 22, 1970.

Anders sat down with Dr. Kate Calvin, our chief scientist and senior climate advisor, to chat about the photo, and NASA’s role in studying our home.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

5 Years, 8 Discoveries: NASA Exoplanet Explorer Sees Dancing Stars & a Star-Shredding Black Hole

TESS images build in vertical strips of four individual squares. Each square shows a small section of sky. They come together to form a flattened look at Earth’s sky as seen through the TESS telescope. It is an area shown in black-and-white with the bright, dusty Milky way curving through the center of the image. The north and south ecliptic poles lie at the top and bottom of the image. The Andromeda galaxy is the small, bright oval near the upper right edge. The Large Magellanic Cloud can be seen along the bottom edge just left of center. Above and to the left of it shine the Small Magellanic Cloud and the bright star cluster 47 Tucanae. Credit: NASA/MIT/TESS and Ethan Kruse (University of Maryland College Park)

This all-sky mosaic was constructed from 912 Transiting Exoplanet Survey Satellite (TESS) images. Prominent features include the Milky Way, a glowing arc that represents the bright central plane of our galaxy, and the Large and Small Magellanic Clouds – satellite galaxies of our own located, respectively, 160,000 and 200,000 light-years away. In the northern sky, look for the small, oblong shape of the Andromeda galaxy (M 31), the closest big spiral galaxy, located 2.5 million light-years away. The black regions are areas of sky that TESS didn’t image. Credit: NASA/MIT/TESS and Ethan Kruse (University of Maryland College Park)

On April 18, 2018, we launched the Transiting Exoplanet Survey Satellite, better known as TESS. It was designed to search for planets beyond our solar system – exoplanets – and to discover worlds for our James Webb Space Telescope, which launched three years later, to further explore. TESS images sections of sky, one hemisphere at a time. When we put all the images together, we get a great look at Earth’s sky!

In its five years in space, TESS has discovered 326 planets and more than 4,300 planet candidates. Along the way, the spacecraft has observed a plethora of other objects in space, including watching as a black hole devoured a star and seeing six stars dancing in space. Here are some notable results from TESS so far:

An infographic with a blue line drawing of the TESS spacecraft is headlined, “TESS, By the Numbers”. It is followed by large numbers with explanations: 329 exoplanets discovered, 4,300 plus exoplanet candidates; 1,500 research papers; 93 percent of sky observed; 5 years in space; 251 terabytes of image data; 467,768 objects observed at high precision; 50 nations contributing science. Credit: NASA/JPL-Caltech

During its first five years in space, our Transiting Exoplanet Survey Satellite has discovered exoplanets and identified worlds that can be further explored by the James Webb Space Telescope. Credit: NASA/JPL-Caltech

1. TESS’ first discovery was a world called Pi Mensae c. It orbits the star Pi Mensae, about 60 light-years away from Earth and visible to the unaided eye in the Southern Hemisphere. This discovery kicked off NASA's new era of planet hunting.

2. Studying planets often helps us learn about stars too! Data from TESS & Spitzer helped scientists detect a planet around the young, flaring star AU Mic, providing a unique way to study how planets form, evolve, and interact with active stars.

A vintage style travel poster shows giant flares from a giant, bright young star in oranges, reds and bright yellow burst from the star, affecting a nearby planet. You can see the planet’s atmosphere being blasted away by the energy. It says, Located less than 32 light-years from Earth, AU Microscopii is among the youngest planetary systems ever observed by astronomers, and its star throws vicious temper tantrums! You’ve heard of the “terrible twos”? Well, AU Mic is in the midst of its terrible 22 … millions! This devilish young system holds planet AU Mic b captive inside a looming disk of ghostly dust and ceaselessly torments it with deadly blasts of X-rays and other radiation, thwarting any chance of life… as we know it! Beware! There is no escaping the stellar fury of this system. The monstrous flares of AU Mic will have you begging for eternal darkness. Credit: NASA/JPL-Caltech
Ubicado a menos de 32 años luz de la Tierra, AU Microscopii se encuentra entre los sistemas planetarios más jóvenes jamás observados por los astrónomos, ¡y su estrella tiene unas brutales rabietas! ¿Has oído hablar de los "terribles dos años"? Pues AU Mic está en medio de sus terribles 22… ¡millones de años! Este sistema joven diabólico mantiene cautivo a su planeta, AU Mic b, dentro de un disco de polvo fantasmal y lo atormenta incesantemente con explosiones mortales de rayos X y otras radiaciones, frustrando cualquier posibilidad de vida ... ¡tal como la conocemos! ¡Cuidado! No hay escapatoria a la furia estelar de este sistema. Las llamaradas monstruosas de AU Mic te harán rogar por la oscuridad eterna. Crédito de imagen: NASA/JPL-Caltech

Located less than 32 light-years from Earth, AU Microscopii is among the youngest planetary systems ever observed by astronomers, and its star throws vicious temper tantrums. This devilish young system holds planet AU Mic b captive inside a looming disk of ghostly dust and ceaselessly torments it with deadly blasts of X-rays and other radiation, thwarting any chance of life… as we know it! Beware! There is no escaping the stellar fury of this system. The monstrous flares of AU Mic will have you begging for eternal darkness. Credit: NASA/JPL-Caltech

3. In addition to finding exoplanets on its own, TESS serves as a pathfinder for the James Webb Space Telescope. TESS discovered the rocky world LHS 3844 b, but Webb will tell us more about its composition. Our telescopes, much like our scientists, work together.

4. Though TESS may be a planet-hunter, it also helps us study black holes! In 2019, TESS saw a ‘‘tidal disruption event,’’ otherwise known as a black hole shredding a star.

An animated illustration shows a tidal disruption, which occurs when a passing star gets too close to a black hole and is torn apart into a stream of gas. Some of the gas eventually settles into a structure around the black hole called an accretion disk. Credit: NASA's Goddard Space Flight Center

When a star strays too close to a black hole, intense tides break it apart into a stream of gas. The tail of the stream escapes the system, while the rest of it swings back around, surrounding the black hole with a disk of debris. Credit: NASA's Goddard Space Flight Center

5. In 2020, TESS discovered its first Earth-size world in the habitable zone of its star – the distance from a star at which liquid water could exist on a planet’s surface. Earlier this year, a second rocky planet was discovered in the system.

In an animation, four planets are shown orbiting a red dwarf star labeled TOI 700. Planets b and c orbit well within a region overlaid in green and labeled optimistic habitable zone and overlaid in yellow and labeled optimistic habitable zone. Planet d orbits consistently in the conservative habitable zone, while planet e moves between the conservative and optimistic habitable zone. Credit: NASA Goddard Space Flight Center

You can see the exoplanets that orbit the star TOI 700 moving within two marked habitable zones, a conservative habitable zone, and an optimistic habitable zone. Planet d orbits within the conservative habitable zone, while planet e moves within an optimistic habitable zone, the range of distances from a star where liquid surface water could be present at some point in a planet’s history. Credit: NASA Goddard Space Flight Center

6. Astronomers used TESS to find a six-star system where all stars undergo eclipses. Three binary pairs orbit each other, and, in turn, the pairs are engaged in an elaborate gravitational dance in a cosmic ballroom 1,900 light-years away in the constellation Eridanus.

This diagram depicts six stars that interact with each other in complex orbits. The stars are arranged in pairs: Systems A, B, and C, are each shown with one larger white star and one smaller orange star. The two stars of System A, in the upper left, are connected by a red oval and labeled "1.3-day orbit." The two stars of System C, just below System A, are connected by a teal oval and labeled "1.6-day orbit." These two systems orbit each other, shown as a larger blue oval connecting the two and labeled "A and C orbit every 4 years." In the bottom right of the image, the two stars of System B are connected by a green oval and labeled "8.2-day orbit." System B orbits the combined AC system, shown as a very large lilac oval labeled "AC and B orbit every 2,000 years." A caption at the bottom of the image notes, "Star sizes are to scale, orbits are not." The image is watermarked with “Illustration” and “Credit: NASA's Goddard Space Flight Center.” Credit: NASA

7. Thanks to TESS, we learned that Delta Scuti stars pulse to the beat of their own drummer. Most seem to oscillate randomly, but we now know HD 31901 taps out a beat that merges 55 pulsation patterns.

An animation shows a bright blue-white star pulsing with vibrations. In a cutaway that reveals the star’s inner workings, waves are represented by blue arrows and they radiate from the center outward to the star’s surface and back again. 
Credit: NASA’s Goddard Space Flight Center

Sound waves bouncing around inside a star cause it to expand and contract, which results in detectable brightness changes. This animation depicts one type of Delta Scuti pulsation — called a radial mode — that is driven by waves (blue arrows) traveling between the star's core and surface. In reality, a star may pulsate in many different modes, creating complicated patterns that enable scientists to learn about its interior. Credit: NASA’s Goddard Space Flight Center

8. Last is a galaxy that flares like clockwork! With TESS and Swift, astronomers identified the most predictably and frequently flaring active galaxy yet. ASASSN-14ko, which is 570 million light-years away, brightens every 114 days!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Meet the Four Artemis Astronauts Who Will Fly Around the Moon

The Artemis II crew sits for an official portrait in front of a dark background. They wear orange suits with various patches noting their names, nationalities, and NASA or CSA. From left to right, are NASA astronauts Christina Koch, Victor Glover (top), and Reid Wiseman (bottom), and Canadian Space Agency astronaut Jeremy Hansen. Koch holds a helmet in her hand. Credit: NASA

Today, we revealed the four astronauts who will fly around the Moon during the Artemis II mission, scheduled to launch in 2024. Get to know them:

Christina Koch

NASA astronaut Christina Hammock Koch poses for a portrait in her orange Artemis flight suit. The suit has blue trim around the neck and shoulders, with three patches: one with the U.S. flag on her left shoulder, one with her name and a pair of wings on her chest, and one with the NASA “meatball” insignia faintly visible beneath the second. The background is dark, and the photo is lit to focus on Koch’s face, which is facing the camera with a dignified expression. Credit: NASA

Meet the first member of our Artemis II crew: mission specialist Christina Koch. Koch visited the International Space Station in 2019, where she participated in the first all-woman spacewalk with Jessica Meir. She began her NASA career as an electrical engineer at Goddard Space Flight Center.

Jeremy Hansen

Canadian astronaut Jeremy Hansen poses for a portrait in his orange Artemis flight suit. The suit has blue trim around the neck and shoulders, with three patches: one with the Canadian flag on his left shoulder, one with his name and a pair of wings on his chest, and one bearing the logo of the Canadian Space Agency faintly visible beneath the second. The background is dark, and the photo is lit to focus on Hansen’s face, which is facing the camera with a dignified expression. Credit: NASA

Representing the Canadian Space Agency is Jeremy Hansen from London, Ontario. Col. Hansen was a fighter pilot with Canadian Armed Forces before joining the Canadian Space Agency, and currently works with NASA on astronaut training and mission operations. This will be Col. Hansen’s first mission in space.

Victor Glover

NASA astronaut Victor Glover poses for a portrait in his orange Artemis flight suit. The suit has blue trim around the neck and shoulders, with three patches: one with the U.S. flag on his left shoulder, one with his name and a pair of wings on his chest, and one with the NASA “meatball” insignia faintly visible beneath the second. The background is dark, and the photo is lit to focus on Glover’s face, which is facing the camera with a dignified expression. Credit: NASA

Victor Glover is our Artemis II pilot. Glover is part of our 2013 class of NASA astronauts and was the pilot for NASA’s SpaceX Crew-1 mission. He’s logged 3,000 flight hours in more than 40 different aircraft.

Reid Wiseman

NASA astronaut Reid Wiseman poses for a portrait in his orange Artemis flight suit. The suit has blue trim around the neck and shoulders, with three patches: one with the U.S. flag on his left shoulder, one with his name and a pair of wings on his chest, and one with the NASA “meatball” insignia faintly visible beneath the second. The background is dark, and the photo is lit to focus on Wiseman's face, which is facing the camera with a dignified expression. Credit: NASA

...and rounding out our Artemis II crew: mission commander Reid Wiseman. Wiseman lived and worked aboard the International Space Station as a flight engineer in 2014. He also commanded the undersea research mission NEEMO21, and most recently served as Chief of the NASA astronauts.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Sakura to Supernova

A prominent, eight-pointed star shines in bright white at the center of this image. A clumpy cloud of material surrounds this central star, with more material above and below than on the sides, in some places allowing background stars to peek through. The cloud material is a dark yellow closer to the star and turns a pinkish purple at its outer edges. Combined together, the central star and its cloud resemble the delicate petals of a cherry blossom. The black background features many smaller white stars scattered throughout.

This rare sight is a super-bright, massive Wolf-Rayet star. Calling forth the ephemeral nature of cherry blossoms, the Wolf-Rayet phase is a fleeting stage that only some stars go through soon before they explode.

The star, WR 124, is 15,000 light-years away in the constellation Sagittarius. It is 30 times the mass of the Sun and has shed 10 Suns worth of material – so far. As the ejected gas moves away from the star and cools, cosmic dust forms and glows in the infrared light detectable by NASA's James Webb Space Telescope.

The origin of cosmic dust that can survive a supernova blast is of great interest to astronomers for multiple reasons. Dust shelters forming stars, gathers together to help form planets, and serves as a platform for molecules to form and clump together, including the building blocks of life on Earth.

Stars like WR 124 also help astronomers understand the early history of the universe. Similar dying stars first seeded the young universe with heavy elements forged in their cores – elements that are now common in the current era, including on Earth.

The James Webb Space Telescope opens up new possibilities for studying details in cosmic dust, which is best observed in infrared wavelengths of light. Webb’s Near-Infrared Camera balances the brightness of WR 124’s stellar core and the knotty details in the fainter surrounding gas. The telescope’s Mid-Infrared Instrument reveals the clumpy structure of the gas and dust nebula of the ejected material now surrounding the star.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Our Roman Space Telescope’s Dish is Complete!

Wide shot of the Nancy Grace Roman Space Telescope’s high-gain antenna inside a testing chamber that is covered in blue spiked-shaped foam. The antenna is a large grey dish, about the height of a refrigerator, facing slightly to the left. There is a small circle that is elevated in the middle of the antenna disk by six metal strips. The antenna is mounted to a base that is also covered in blue spikes. Credit: NASA/Chris Gunn

NASA engineers recently completed tests of the high-gain antenna for our Nancy Grace Roman Space Telescope. This observatory has some truly stellar plans once it launches by May 2027. Roman will help unravel the secrets of dark energy and dark matter – two invisible components that helped shape our universe and may determine its ultimate fate. The mission will also search for and image planets outside our solar system and explore all kinds of other cosmic topics.

However, it wouldn’t be able to send any of the data it will gather back to Earth without its antenna. Pictured above in a test chamber, this dish will provide the primary communication link between the Roman spacecraft and the ground. It will downlink the highest data volume of any NASA astrophysics mission so far.

Close-up of the Nancy Grace Roman Space Telescope’s high-gain antenna inside a testing chamber that is covered in blue spiked-shaped foam. The antenna is a large grey dish, about the height of a refrigerator, facing slightly to the right. There is a small circle that is elevated in the middle of the antenna disk by six metal strips. There are small faint black circles that cover the disk. Credit: NASA/Chris Gunn

The antenna reflector is made of a carbon composite material that weighs very little but will still withstand wide temperature fluctuations. It’s very hot and cold in space – Roman will experience a temperature range of minus 26 to 284 degrees Fahrenheit (minus 32 to 140 degrees Celsius)!

The dish spans 5.6 feet (1.7 meters) in diameter, standing about as tall as a refrigerator, yet only weighs 24 pounds (10.9 kilograms) – about as much as a dachshund. Its large size will help Roman send radio signals across a million miles of intervening space to Earth.

At one frequency, the dual-band antenna will receive commands and send back information about the spacecraft’s health and location. It will use another frequency to transmit a flood of data at up to 500 megabits per second to ground stations on Earth. The dish is designed to point extremely accurately at Earth, all while both Earth and the spacecraft are moving through space.

Close-up of the spiked-shaped blue foam covering the walls of the chamber. Credit: NASA/Chris Gunn

Engineers tested the antenna to make sure it will withstand the spacecraft’s launch and operate as expected in the extreme environment of space. The team also measured the antenna’s performance in a radio-frequency anechoic test chamber. Every surface in the test chamber is covered in pyramidal foam pieces that minimize interfering reflections during testing. Next, the team will attach the antenna to the articulating boom assembly, and then electrically integrate it with Roman’s Radio Frequency Communications System.

Learn more about the exciting science this mission will investigate on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

Moon Mountain Named After Melba Roy Mouton, NASA Mathematician

Black and white photo of Melba Roy Mouton (1929-1990), a mathematician and computer programmer in NASA’s Trajectory and Geodynamics Division, acting as the Assistant Chief of Research Programs. Credit: NASA

Award-winning NASA mathematician and computer programmer Melba Mouton is being honored with the naming of a mountain at the Moon’s South Pole. Mouton joined NASA in 1959, just a year after the space agency was established. She was the leader of a team that coded computer programs to calculate spacecraft trajectories and locations. Her contributions were instrumental to landing the first humans on the Moon.

She also led the group of "human computers," who tracked the Echo satellites. Roy and her team's computations helped produce the orbital element timetables by which millions could view the satellite from Earth as it passed overhead.

The towering lunar landmark now known as “Mons Mouton” stands at a height greater than 19,000 feet. The mountain was created over billions of years by lunar impacts. Huge craters lie around its base—some with cliff-like edges that descend into areas of permanent darkness. Mons Mouton is the future landing site of VIPER, our first robotic Moon rover. The rover will explore the Moon’s surface to help gain a better understanding of the origin of lunar water. Here are things to know:

Mons Mouton is a wide, relatively flat-topped mountain that stretches roughly 2,700 square miles

A slow zoom toward a large, flat-topped mountain on the Moon. The gif animation brings us ever-closer to wide topped lunar mountain surrounded by craters that cast retreating shadow as the light changes, revealing more of the feature as the animation continues. Credit: NASA’s Scientific Visualization Studio

The mountain is the highest spot at the Moon’s South Pole and can be seen from Earth with a telescope

A gif animation shows a slow pan down at the Moon’s South Pole reveals Earth in the distance against the black backdrop of space. Credit: NASA’s Scientific Visualization Studio

Our VIPER Moon rover will explore Mons Mouton over the course of its 100-day mission

A gif animation circles a rendering of VIPER, NASA’s first robotic Moon rover as it moves forward at the Moon’s South Pole. The Sun illuminates the rover’s silhouette against the black backdrop of space as it leaves tracks in its wake Credit: NASA/Daniel Rutter

VIPER will map potential resources which will help inform future landing sites under our Artemis program

A gif animation pans across a lunar South Pole landscape as the VIPER Moon rover makes its way down the sloping side of a feature on the Moon. Credit: NASA/Daniel Rutter/Ernie Wright

The VIPER mission is managed by our Ames Research Center in California’s Silicon Valley. The approximately 1,000-pound rover will be delivered to the Moon by a commercial vendor as part of our Commercial Lunar Payload Services initiative, delivering science and technology payloads to and near the Moon.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago
A long-exposure image of a rocket launching to space. The image, which resembles a gigantic beam of light or a lightsaber, was taken several seconds after liftoff. The black launch tower is still visible at the bottom of the image. The background is the clear blue sky. The photo is of a SpaceX Falcon 9 rocket launching NASA’s SpaceX Crew-5 mission to the International Space Station with NASA astronauts Nicole Mann and Josh Cassada, Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, and Roscosmos cosmonaut Anna Kikina onboard, Wednesday, Oct. 5, 2022, at NASA’s Kennedy Space Center in Florida. Credit: NASA/Joel Kowsky

Digital Creators: Apply to Watch Astronauts Launch to Space with NASA

Do you spend a lot of time online? Would you like to see our next crew of astronauts lift off to the International Space Station?

We're looking for digital content creators of all backgrounds to join us at Kennedy Space Center in Florida for our Crew-6 mission to the space station, set to lift off no earlier than Sunday, Feb. 26. Applications close Friday, Jan. 27 at 3 p.m. EST (2000 UTC)—we'd love to see you there! Apply now.

Can't make this one? Click here to stay updated about future opportunities.


Tags
2 years ago

Why Isn’t Every Year the Warmest Year on Record?

This just in: 2022 effectively tied for the fifth warmest year since 1880, when our record starts. Here at NASA, we work with our partners at NOAA to track temperatures across Earth’s entire surface, to keep a global record of how our planet is changing.

Overall, Earth is getting hotter.

Data visualization of temperature anomalies on Earth from 1880-2022. The visualization gradually progresses from more blues, which represent cooler temperatures, to more reds, higher temperatures. Credit: NASA’s Scientific Visualization Studio

The warming comes directly from human activities – specifically, the release of greenhouse gases like carbon dioxide from burning fossil fuels. We started burning fossil fuels in earnest during the Industrial Revolution. Activities like driving cars and operating factories continue to release greenhouse gases into our atmosphere, where they trap heat in the atmosphere.

Animation of energy coming from the Sun and bouncing off a pollution cloud back into space. A red beam of heat energy from Earth's surface into the cloud of pollution, trapped near the surface. Credit: NASA/CI Labs

So…if we’re causing Earth to warm, why isn’t every year the hottest year on record?

As 2022 shows, the current global warming isn’t uniform. Every single year isn’t necessarily warmer than every previous year, but it is generally warmer than most of the preceding years. There’s a warming trend.

Earth is a really complex system, with various climate patterns, solar activity, and events like volcanic eruptions that can tip things slightly warmer or cooler.

Climate Patterns

While 2021 and 2022 continued a global trend of warming, they were both a little cooler than 2020, largely because of a natural phenomenon known as La Niña.

La Niña is one third of a climate phenomenon called El Niño Southern Oscillation, also known as ENSO, which can have significant effects around the globe. During La Niña years, ocean temperatures in the central and eastern Pacific Ocean cool off slightly. La Niña’s twin, El Niño brings warmer temperatures to the central and eastern Pacific. Neutral years bring ocean temperatures in the region closer to the average.

Data visualization of ocean temperature anomalies in the Pacific during an El Nino. A dark red blob of warm water appears to head from the central tropical ocean toward South America. Credit: NASA’s Scientific Visualization Studio

El Niño and La Niña affect more than ocean temperatures – they can bring changes to rainfall patterns, hurricane frequency, and global average temperature.

We’ve been in a La Niña mode the last three, which has slightly cooled global temperatures. That’s one big reason 2021 and 2022 were cooler than 2020 – which was an El Niño year.

Overall warming is still happening. Current El Niño years are warmer than previous El Niño years, and the same goes for La Niña years. In fact, enough overall warming has occurred that most current La Niña years are warmer than most previous El Niño years. This year was the warmest La Niña year on record.

Graph visualizing average global temperature anomalies 1950 to 2022. Each bar is colored to indicate an El Nino, La Nina, or neutral year. The lines get progressively taller as temperatures increase. Credit: NASA

Solar Activity

Our Sun cycles through periods of more and less activity, on a schedule of about every 11 years. Here on Earth, we might receive slightly less energy — heat — from the Sun during quieter periods and slightly more during active periods.

Two visualizations of the rotating yellow Sun, side by side. One, labeled Solar Minimum, has very few dark sunspots. The other, labeled Solar Maximum, has a number of dark sunspots and outbursts. Credit: NASA

At NASA, we work with NOAA to track the solar cycle. We kicked off a new one – Solar Cycle 25 – after solar minimum in December 2019. Since then, solar activity has been slightly ramping up.

Because we closely track solar activity, we know that over the past several decades, solar activity hasn't been on the rise, while greenhouse gases have. More importantly, the "fingerprints" we see on the climate, including temperature changes in the upper atmosphere, don't fit the what we'd expect from solar-caused warming. Rather they look like what we expect from increased greenhouse warming, verifying a prediction made decades ago by NASA.

Volcanic Eruptions

Throughout history, volcanoes have driven major shifts in Earth’s climate. Large eruptions can release water vapor — a greenhouse gas like carbon dioxide — which traps additional warmth within our atmosphere.

On the flip side, eruptions that loft lots of ash and soot into the atmosphere can temporarily cool the climate slightly, by reflecting some sunlight back into space.

Like solar activity, we can monitor volcanic eruptions and tease out their effect on variations in our global temperature.

A view from space of a volcanic eruption. A plume of ash and smoke bubbles up from the center of the frame, in the ocean, expanding rapidly as it erupts upward. As it erupts, the Sun starts to set. Credit: NOAA/GOES

At the End of the Day, It’s Us

Our satellites, airborne missions, and measurements from the ground give us a comprehensive picture of what’s happening on Earth every day. We also have computer models that can skillfully recreate Earth’s climate.

By combining the two, we can see what would happen to global temperature if all the changes were caused by natural forces, like volcanic eruptions or ENSO. By looking at the fingerprints each of these climate drivers leave in our models, it’s perfectly clear: The current global warming we’re experiencing is caused by humans.

For more information about climate change, visit climate.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
2 years ago

What are Phytoplankton and Why Are They Important?

Breathe deep… and thank phytoplankton.

Why? Like plants on land, these microscopic creatures capture energy from the sun and carbon from the atmosphere to produce oxygen.

This moving image represents phytoplankton in motion. The background is blue. In the first motion two circular phytoplankton with six tentacles across the screen. After that, three circles of phytoplankton colored in red, blue and orange move from right to life. The final image shows a variety of phytoplankton appearing. NASA/Michael Starobin

Phytoplankton are microscopic organisms that live in watery environments, both salty and fresh. Though tiny, these creatures are the foundation of the aquatic food chain. They not only sustain healthy aquatic ecosystems, they also provide important clues on climate change.

Let’s explore what these creatures are and why they are important for NASA research.

Phytoplankton are diverse

Phytoplankton are an extremely diversified group of organisms, varying from photosynthesizing bacteria, e.g. cyanobacteria, to diatoms, to chalk-coated coccolithophores. Studying this incredibly diverse group is key to understanding the health - and future - of our ocean and life on earth.

This set of illustrations shows five different types of phytoplankton: cyanobacteria, diatom, dinoflagellate, green algae, and coccolithophore. Cyanobacteria look like a column of circles stuck together. Diatoms look like a triangle with rounded sides; there is a spherical shape at each corner of the triangle. Dinoflagellates look like an urn with fish-like fins on the top and right side, and a long whiplike appendage. Green algae are round with sharp spikes emanating like the teeth of a gear. Coccolithophores are spherical, and covered with flat round features, each circled with fluted edges like a pie crust. Credit: NASA/Sally Bensusen

Their growth depends on the availability of carbon dioxide, sunlight and nutrients. Like land plants, these creatures require nutrients such as nitrate, phosphate, silicate, and calcium at various levels. When conditions are right, populations can grow explosively, a phenomenon known as a bloom.

This image shows phytoplankton growing in a bloom. The bloom is colored in shades of green in the South Pacific Ocean off the Coast of New Zealand. In the left of the image clouds and blue water appear. In the left bottom corner a land mass colored in green and brown appears. To the middle the Cook Strait appears between the North and South Island of New Zealand in green. Credit: NASA

Phytoplankton blooms in the South Pacific Ocean with sediment re-suspended from the ocean floor by waves and tides along much of the New Zealand coastline.

Phytoplankton are Foundational

Phytoplankton are the foundation of the aquatic food web, feeding everything from microscopic, animal-like zooplankton to multi-ton whales. Certain species of phytoplankton produce powerful biotoxins that can kill marine life and people who eat contaminated seafood.

This image is divided into five different images. On the left, tiny phytoplankton, clear in color, are present. On the second a larger plankton, orange in color appears. In the middle, a blue sea image shows a school of fish. Next to that a large green turtle looks for food on the ocean floor. On the right, a large black whale jumps out of the water. Credit: WHOI

Phytoplankton are Part of the Carbon Cycle

Phytoplankton play an important part in the flow of carbon dioxide from the atmosphere into the ocean. Carbon dioxide is consumed during photosynthesis, with carbon being incorporated in the phytoplankton, and as phytoplankton sink a portion of that carbon makes its way into the deep ocean (far away from the atmosphere).

Changes in the growth of phytoplankton may affect atmospheric carbon dioxide concentrations, which impact climate and global surface temperatures. NASA field campaigns like EXPORTS are helping to understand the ocean's impact in terms of storing carbon dioxide.

This moving image shows angled phytoplankton, clear in color moving on a blue background. The image then switches to water. The top is a light blue with dots, while the dark blue underneath represents underwater. The moving dots on the bottom float to the top, to illustrate the carbon cycle. Credit: NASA

Phytoplankton are Key to Understanding a Changing Ocean

NASA studies phytoplankton in different ways with satellites, instruments, and ships. Upcoming missions like Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) - set to launch Jan. 2024 - will reveal interactions between the ocean and atmosphere. This includes how they exchange carbon dioxide and how atmospheric aerosols might fuel phytoplankton growth in the ocean.

Information collected by PACE, especially about changes in plankton populations, will be available to researchers all over the world. See how this data will be used.

The Ocean Color Instrument (OCI) is integrated onto the PACE spacecraft in the cleanroom at Goddard Space Flight Center. Credit: NASA


Tags
2 years ago

Time for some Sun salutations 🧘

Flow through 133 days of the Sun's activity from Aug. 12 to Dec. 22, 2022, as captured by our Solar Dynamics Observatory. From its orbit around Earth, SDO has steadily imaged the Sun in 4K resolution for nearly 13 years.

Video description: Mellow music plays as compiled images taken every 108 seconds condenses 133 days of solar observations into an hour-long video. The video shows bright active regions passing across the face of the Sun as it rotates.

Credit: NASA's Goddard Space Flight Center, Scott Wiessinger (Lead Producer and editor), Tom Bridgman (Lead Visualizer), Lars Leonhard (music)


Tags
2 years ago

Calling Long-Distance: 10 Stellar Moments in 2022 for Space Communications and Navigation

Just like your phone needs Wi-Fi or data services to text or call – NASA spacecraft need communication services.

Giant antennas on Earth and a fleet of satellites in space enable missions to send data and images back to our home planet and keep us in touch with our astronauts in space. Using this data, scientists and engineers can make discoveries about Earth, the solar system, and beyond. The antennas and satellites make up our space communications networks: the Near Space Network and Deep Space Network.

Check out the top ten moments from our space comm community: 

NASA’s Orion spacecraft in space looking at the Moon from a camera mounted on one of its solar arrays. The Orion spacecraft appears in the foreground. The Earth and the Moon appear in the far distance against the blackness of space. The Moon appears just slightly larger than Earth. Credit: NASA

1. Space communication networks helped the Artemis I mission on its historic journey to the Moon. From the launch pad to the Moon and back, the Near Space Network and Deep Space Network worked hand-in-hand to seamlessly support Artemis I. These networks let mission controllers send commands up to the spacecraft and receive important spacecraft health data, as well as incredible images of the Moon and Earth.

The Pathfinder Technology Demonstration 3 spacecraft with hosted TeraByte InfraRed Delivery (TBIRD) payload communicating with laser links down to Earth. Credit: NASA/Ames Research Center

2. Spacecraft can range in size – from the size of a bus to the size of a cereal box. In May 2022, we launched a record-breaking communication system the size of a tissue box. TBIRD showcases the benefits of a laser communications system, which uses infrared light waves rather than radio waves to communicate more data at once. Just like we have upgraded from 3G to 4G to 5G on our phones, we are upgrading its space communications capabilities by implementing laser comms!

Image of the white DSN 34-meter antenna lit up against a dark black sky in Madrid, Spain. Credit: NASA/JPL-Caltech

3. The Deep Space Network added a new 34-meter (111-foot) antenna to continue supporting science and exploration missions investigating our solar system and beyond. Deep Space Station 53 went online in February 2022 at our Madrid Deep Space Communications Complex. It is the fourth of six antennas being added to expand the network’s capacity.

An artistic rendering of the Earth and Moon with the Moon in the forefront. Surrounding the two planetary bodies are vibrant networking lines showing robust communications on Earth and at the Moon. Credit: NASA/Dave Ryan

4. You’ve probably seen in the news that there are a lot of companies working on space capabilities. The Near Space Network is embracing the aerospace community’s innovative work and seeking out multiple partnerships. In 2022, we met with over 300 companies in hopes of beginning new collaborative efforts and increasing savings.

The ILLUMA-T payload in a Goddard cleanroom with a covered optical module and various wires and simulators. Credit: NASA/Taylor Mickal 

5. Similar to TBIRD, we're developing laser comms for the International Space Station. The terminal will show the benefits of laser comms while using a new networking technique called High Delay/Disruption Tolerant Networking that routes data four times faster than current systems. This year, engineers tested and proved the capability in a lab.

The image is divided horizontally by an undulating line between a cloudscape forming a nebula along the bottom portion and a comparatively clear upper portion. Speckled across both portions is a starfield. The upper portion of the image is blueish, and has wispy translucent cloud-like streaks rising from the nebula below. The orangish cloudy formation in the bottom half varies in density and ranges from translucent to opaque. The cloud-like structure of the nebula contains ridges, peaks, and valleys – an appearance very similar to a mountain range. Image Credit: NASA, ESA, CSA, and STScI. Image processing: J. DePasquale (STScI).

6. In 2021, we launched the James Webb Space Telescope, a state-of-the-art observatory to take pictures of our universe. This year, the Deep Space Network received the revolutionary first images of our solar system from Webb. The telescope communicates with the network’s massive antennas at three global complexes in Canberra, Australia; Madrid, Spain; and Goldstone, California.

Two engineers look across the vast Arizona desert as they test new 4G and 5G communications technologies. Credit: NASA/Glenn Research Center

7. Just like we use data services on our phone to communicate, we'll do the same with future rovers and astronauts exploring the Moon. In 2022, the Lunar LTE Studies project, or LunarLiTES, team conducted two weeks of testing in the harsh depths of the Arizona desert, where groundbreaking 4G LTE communications data was captured in an environment similar to the lunar South Pole. We're using this information to determine the best way to use 4G and 5G networking on the Moon.

From left, NASA Deputy Associate Administrator and Program Manager for Space Communications and Navigation Badri Younes, Mayor of Laingsburg Johanna Botha, and Director General of South Africa's Department of Science and Innovation Dr. Phil Mjwara break ground at the site of a new Lunar Exploration Ground Sites antenna in Matjiesfontein, South Africa Nov. 8. Credit: NASA/Al Feinberg

8. A new Near Space Network antenna site was unveiled in Matjiesfontein, South Africa. NASA and the South African Space Agency celebrated a ground-breaking at the site of a new comms antenna that will support future Artemis Moon missions. Three ground stations located strategically across the globe will provide direct-to-Earth communication and navigation capabilities for lunar missions.

Space Communications and Navigation intern, Ashwin Mishra, testing equipment in the Quantum Communications Lab. Credit: NASA/Glenn Research Center

9. Quantum science aims to better understand the world around us through the study of extremely small particles. April 14, 2022, marked the first official World Quantum Day celebration, and we participated alongside other federal agencies and the National Quantum Coordination Office. From atomic clocks to optimizing laser communications, quantum science promises to greatly improve our advances in science, exploration, and technology.

An artistic rendering of the DART mission approaching the asteroid Dimorphos, near its parent asteroid, Didymos. NASA/Johns Hopkins APL/Steve Gribben

10. We intentionally crashed a spacecraft into an asteroid to test technology that could one day be used to defend Earth from asteroids. The Double Asteroid Redirection Test, or DART, mission successfully collided with the asteroid Dimorphos at a rate of 4 miles per second (6.1 kilometers per second), with real-time video enabled by the Deep Space Network. Alongside communications and navigation support, the global network also supports planetary defense by tracking near-Earth objects.

We look forward to many more special moments connecting Earth to space in the coming year.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Explore Tumblr Blog
Search Through Tumblr Tags